- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 LuxembourgPublisher:Institute of Electrical and Electronics Engineers (IEEE) Hönes, C.; Hackenberg, J.; Keller, R.; Zweigart, S.; Fuchs, A.; Siebentritt, Susanne;In the search for a nontoxic replacement of the commonly employed CdS buffer layer for Cu(In,Ga)(S,Se) $_\mathrm{2}$ based solar cells, chemically deposited Zn(O,S) thin films are a most promising choice. In this paper, we address the usually slow deposition speed of Zn(O,S) in a newly developed ammonia-free chemical bath process, resulting in a deposition of 30 nm in 3 min with good homogeneity on 30 cm × 30 cm sized substrates. Solar cells with buffer layers prepared from this process match the efficiency of CdS reference cells. In a second step, we address the light-soaking post-treatment, still needed for maximum efficiencies. By addition of aluminum to the deposition process, the initial efficiencies can be increased slightly. With the addition of boron, the light-soaking post-treatment is rendered unnecessary, while maintaining high efficiencies above 15%, surpassing reference cells with CdS buffer.
IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2017Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2017Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Susanne Siebentritt; Christian Hönes; Anne Fuchs; S. Zweigart;Chemically deposited Zn(O,S) is one of the most promising materials replacing the commonly employed CdS buffer layer for Cu(In,Ga)(S,Se)2 solar cells. While yielding higher short-circuit currents, Zn(O,S) buffered cells commonly show initially low fill factors and open-circuit voltage. Different posttreatments (annealing, light-soaking) have to be employed to reach high efficiencies. In this paper, we introduce a method for controlled incorporation of indium into Zn(O,S) buffer layers up to ${\text{{[}In{]}/({[}In{]}+{[}Zn{]})}=0.5}$ within an alkaline process. Solar cells with such a new indium containing buffer layer show higher initial fill factor and open-circuit voltages, leading to efficiencies above 14 $\%$ without extensive light-soaking. Photoelectron spectroscopy measurements are used to determine the composition of these zinc indium oxysulfide thin films and to extract the valence band alignment with the underlying Cu(In,Ga)(S,Se)2 substrate. Calculated conduction band offsets show a decrease of an initially high conduction band offset between Cu(In,Ga)(S,Se)2 and buffer layer upon indium incorporation, lowering the barrier for current transport and, thus, giving a reason for the improved solar cell behavior. We demonstrate a novel cadmium-free buffer layer material with wider bandgap than CdS, which is produced in a simple chemical bath process and yields efficiencies comparable with CdS buffered cells.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2487818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2487818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 LuxembourgPublisher:Institute of Electrical and Electronics Engineers (IEEE) Hönes, C.; Hackenberg, J.; Keller, R.; Zweigart, S.; Fuchs, A.; Siebentritt, Susanne;In the search for a nontoxic replacement of the commonly employed CdS buffer layer for Cu(In,Ga)(S,Se) $_\mathrm{2}$ based solar cells, chemically deposited Zn(O,S) thin films are a most promising choice. In this paper, we address the usually slow deposition speed of Zn(O,S) in a newly developed ammonia-free chemical bath process, resulting in a deposition of 30 nm in 3 min with good homogeneity on 30 cm × 30 cm sized substrates. Solar cells with buffer layers prepared from this process match the efficiency of CdS reference cells. In a second step, we address the light-soaking post-treatment, still needed for maximum efficiencies. By addition of aluminum to the deposition process, the initial efficiencies can be increased slightly. With the addition of boron, the light-soaking post-treatment is rendered unnecessary, while maintaining high efficiencies above 15%, surpassing reference cells with CdS buffer.
IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2017Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2017Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Susanne Siebentritt; Christian Hönes; Anne Fuchs; S. Zweigart;Chemically deposited Zn(O,S) is one of the most promising materials replacing the commonly employed CdS buffer layer for Cu(In,Ga)(S,Se)2 solar cells. While yielding higher short-circuit currents, Zn(O,S) buffered cells commonly show initially low fill factors and open-circuit voltage. Different posttreatments (annealing, light-soaking) have to be employed to reach high efficiencies. In this paper, we introduce a method for controlled incorporation of indium into Zn(O,S) buffer layers up to ${\text{{[}In{]}/({[}In{]}+{[}Zn{]})}=0.5}$ within an alkaline process. Solar cells with such a new indium containing buffer layer show higher initial fill factor and open-circuit voltages, leading to efficiencies above 14 $\%$ without extensive light-soaking. Photoelectron spectroscopy measurements are used to determine the composition of these zinc indium oxysulfide thin films and to extract the valence band alignment with the underlying Cu(In,Ga)(S,Se)2 substrate. Calculated conduction band offsets show a decrease of an initially high conduction band offset between Cu(In,Ga)(S,Se)2 and buffer layer upon indium incorporation, lowering the barrier for current transport and, thus, giving a reason for the improved solar cell behavior. We demonstrate a novel cadmium-free buffer layer material with wider bandgap than CdS, which is produced in a simple chemical bath process and yields efficiencies comparable with CdS buffered cells.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2487818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2487818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu