- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 Belgium, Australia, Spain, Australia, United States, Netherlands, ItalyPublisher:Oxford University Press (OUP) Funded by:NSF | Collaborative Research: M..., NSF | RESEARCH-PGRP - Adapting ..., NSF | RESEARCH-PGR: SECRETome ... +12 projectsNSF| Collaborative Research: MRA: Scaling from Traits to Forest Ecosystem Fluxes and Responses to Climate Change, from Stand to Continent ,NSF| RESEARCH-PGRP - Adapting to a Harsh Environment: Arbuscular Mycorrhizal Fungi, Drought Stress and Plasticity of Plant Architecture for a Beneficial Outcome ,NSF| RESEARCH-PGR: SECRETome Project: Systematic Evaluation of CellulaR ExporT from plant cells ,UKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,NSF| Molecular Mechanisms of CO2 Signal Transduction in Plants ,NSF| COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMES ,ARC| Discovery Projects - Grant ID: DP220102785 ,ARC| Discovery Projects - Grant ID: DP190102725 ,DFG ,NWO| Release and Catch! Using a light-controlled probe to uncover the signaling interactome of phosphatidic acid in the plant cold response. ,EC| BoostCrop ,EC| Sense2SurviveSalt ,NSF| NRT: Plants-3D (Discover, Design and Deploy): Training Diverse Graduate Student Cohorts in Plant Synthetic Biology ,NWO| The plant PIP2 interactome – Shedding Light onto the Plant's Response to Heat- and Osmotic Stress ,HRZZ| Coordination reactions of macrocyclic ligands in solutionPaul E Verslues; Julia Bailey-Serres; Craig Brodersen; Thomas N Buckley; Lucio Conti; Alexander Christmann; José R Dinneny; Erwin Grill; Scott Hayes; Robert W Heckman; Po-Kai Hsu; Thomas E Juenger; Paloma Mas; Teun Munnik; Hilde Nelissen; Lawren Sack; Julian I Schroeder; Christa Testerink; Stephen D Tyerman; Taishi Umezawa; Philip A Wigge;pmid: 36018271
pmc: PMC9806664
Abstract We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Archivio Istituziona... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/48k7s53nData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAReview . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Plant CellReview . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio Istituziona... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/48k7s53nData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAReview . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Plant CellReview . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Michael P. Ricketts; Robert W. Heckman; Philip A. Fay; Roser Matamala; Julie D. Jastrow; Felix B. Fritschi; Jason Bonnette; Thomas E. Juenger;doi: 10.1111/gcbb.13046
AbstractSwitchgrass, a potential biofuel crop, is a genetically diverse species with phenotypic plasticity enabling it to grow in a range of environments. Two primary divergent ecotypes, uplands and lowlands, exhibit trait combinations representative of acquisitive and conservative growth allocation strategies, respectively. Whether these ecotypes respond differently to various types of environmental drivers remains unclear but is crucial to understanding how switchgrass varieties will respond to climate change. We grew two upland, two lowland, and two intermediate/hybrid cultivars of switchgrass at three sites along a latitudinal gradient in the central United States. Over a 4‐year period, we measured plant functional traits and biomass yields and evaluated genotype‐by‐environment (G × E) interaction effects by analyzing switchgrass responses to soil and climate variables. We found substantial evidence of G × E interactions on biomass yield, primarily due to deviations in the response of the southern lowland cultivar Alamo, which produced more biomass in hotter and drier environments relative to other cultivars. While lowland cultivars had the highest potential for yield, their yields were more variable year‐to‐year compared to other cultivars, suggesting greater sensitivity to environmental perturbations. Models comparing soil and climate principal components as explanatory variables revealed soil properties, especially nutrients, to be most effective at predicting switchgrass biomass yield. Also, positive correlations between biomass yield and conservative plant traits, such as high stem mass and tiller height, became stronger at lower latitudes where the climate is hotter and drier, regardless of ecotype. Lowland cultivars, however, showed a greater predisposition to exhibit these conservative traits. These results suggest switchgrass trait allocation trade‐offs that prioritize aboveground biomass production are more tightly associated in hot, dry environments and that lowland cultivars may exhibit a more specialized strategy relative to other cultivars. Altogether, this research provides essential knowledge for improving the viability of switchgrass as a biofuel crop.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Oxford University Press (OUP) Funded by:UKRI | SCORE: Supply Chain Optim...UKRI| SCORE: Supply Chain Optimisation for demand Response EfficiencyNancy A Eckardt; Sean Cutler; Thomas E Juenger; Amy Marshall-Colon; Michael Udvardi; Paul E Verslues;The Plant Cell arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Plant Cell arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Oxford University Press (OUP) Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthNeal W Tilhou; Jason Bonnette; Arvid R Boe; Philip A Fay; Felix B Fritschi; Robert B Mitchell; Francis M Rouquette; Yanqi Wu; Julie D Jastrow; Michael Ricketts; Shelley D Maher; Thomas E Juenger; David B Lowry;Abstract Switchgrass is a potential crop for bioenergy or carbon capture schemes, but further yield improvements through selective breeding are needed to encourage commercialization. To identify promising switchgrass germplasm for future breeding efforts, we conducted multisite and multitrait genomic prediction with a diversity panel of 630 genotypes from 4 switchgrass subpopulations (Gulf, Midwest, Coastal, and Texas), which were measured for spaced plant biomass yield across 10 sites. Our study focused on the use of genomic prediction to share information among traits and environments. Specifically, we evaluated the predictive ability of cross-validation (CV) schemes using only genetic data and the training set (cross-validation 1: CV1), a subset of the sites (cross-validation 2: CV2), and/or with 2 yield surrogates (flowering time and fall plant height). We found that genotype-by-environment interactions were largely due to the north–south distribution of sites. The genetic correlations between the yield surrogates and the biomass yield were generally positive (mean height r = 0.85; mean flowering time r = 0.45) and did not vary due to subpopulation or growing region (North, Middle, or South). Genomic prediction models had CV predictive abilities of −0.02 for individuals using only genetic data (CV1), but 0.55, 0.69, 0.76, 0.81, and 0.84 for individuals with biomass performance data from 1, 2, 3, 4, and 5 sites included in the training data (CV2), respectively. To simulate a resource-limited breeding program, we determined the predictive ability of models provided with the following: 1 site observation of flowering time (0.39); 1 site observation of flowering time and fall height (0.51); 1 site observation of fall height (0.52); 1 site observation of biomass (0.55); and 5 site observations of biomass yield (0.84). The ability to share information at a regional scale is very encouraging, but further research is required to accurately translate spaced plant biomass to commercial-scale sward biomass performance.
G3: Genes, Genomes, ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/g3journal/jkae159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert G3: Genes, Genomes, ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/g3journal/jkae159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: P. Camilla Durant; Amit Bhasin; Thomas E. Juenger; Robert W. Heckman;doi: 10.1002/ajb2.16349
pmid: 38783552
AbstractPremiseLeaf tensile resistance, a leaf's ability to withstand pulling forces, is an important determinant of plant ecological strategies. One potential driver of leaf tensile resistance is growing season length. When growing seasons are long, strong leaves, which often require more time and resources to construct than weak leaves, may be more advantageous than when growing seasons are short. Growing season length and other ecological conditions may also impact the morphological traits that underlie leaf tensile resistance.MethodsTo understand variation in leaf tensile resistance, we measured size‐dependent leaf strength and size‐independent leaf toughness in diverse genotypes of the widespread perennial grass Panicum virgatum (switchgrass) in a common garden. We then used quantitative genetic approaches to estimate the heritability of leaf tensile resistance and whether there were genetic correlations between leaf tensile resistance and other morphological traits.ResultsLeaf tensile resistance was positively associated with aboveground biomass (a proxy for fitness). Moreover, both measures of leaf tensile resistance exhibited high heritability and were positively genetically correlated with leaf lamina thickness and leaf mass per area (LMA). Leaf tensile resistance also increased with the growing season length in the habitat of origin, and this effect was mediated by both LMA and leaf thickness.ConclusionsDifferences in growing season length may promote selection for different leaf lifespans and may explain existing variation in leaf tensile resistance in P. virgatum. In addition, the high heritability of leaf tensile resistance suggests that P. virgatum will be able to respond to climate change as growing seasons lengthen.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.16349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.16349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:NSF | EVO-LTER: Leveraging long...NSF| EVO-LTER: Leveraging long-term ecological research in grasslands: facilitating collaborations between ecologists and evolutionary biologistsAuthors: Jennifer M. Cocciardi; Ava M. Hoffman; Diego F. Alvarado-Serrano; Jill Anderson; +30 AuthorsJennifer M. Cocciardi; Ava M. Hoffman; Diego F. Alvarado-Serrano; Jill Anderson; Meghan Blumstein; Emma L. Boehm; Lana G. Bolin; Israel T. Borokini; Gideon S. Bradburd; Haley A. Branch; Lars A. Brudvig; Yanni Chen; Scott L. Collins; David L. Des Marais; Diana Gamba; Niall P. Hanan; Mia M. Howard; Joseph Jaros; Thomas E. Juenger; Nicholas J. Kooyers; Ezra J. Kottler; Jennifer A. Lau; Mitra Menon; David A. Moeller; Thomas J. Mozdzer; Seema N. Sheth; Melinda Smith; Katherine Toll; Mark C. Ungerer; Megan L. Vahsen; Susana M. Wadgymar; Amy Waananen; Kenneth D. Whitney; Meghan L. Avolio;pmid: 39095611
Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change. For ecologists, we outline how long-term ecological experiments can be expanded for evolutionary inquiry, and for evolutionary biologists, we illustrate how observed long-term ecological patterns may motivate new evolutionary questions. We advocate for collaborative, multi-site investigations and discuss barriers to conducting evolutionary work at network sites. Ultimately, these networks offer valuable information and opportunities to improve predictions of species' responses to global change.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02464-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02464-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 Belgium, Australia, Spain, Australia, United States, Netherlands, ItalyPublisher:Oxford University Press (OUP) Funded by:NSF | Collaborative Research: M..., NSF | RESEARCH-PGRP - Adapting ..., NSF | RESEARCH-PGR: SECRETome ... +12 projectsNSF| Collaborative Research: MRA: Scaling from Traits to Forest Ecosystem Fluxes and Responses to Climate Change, from Stand to Continent ,NSF| RESEARCH-PGRP - Adapting to a Harsh Environment: Arbuscular Mycorrhizal Fungi, Drought Stress and Plasticity of Plant Architecture for a Beneficial Outcome ,NSF| RESEARCH-PGR: SECRETome Project: Systematic Evaluation of CellulaR ExporT from plant cells ,UKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,NSF| Molecular Mechanisms of CO2 Signal Transduction in Plants ,NSF| COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMES ,ARC| Discovery Projects - Grant ID: DP220102785 ,ARC| Discovery Projects - Grant ID: DP190102725 ,DFG ,NWO| Release and Catch! Using a light-controlled probe to uncover the signaling interactome of phosphatidic acid in the plant cold response. ,EC| BoostCrop ,EC| Sense2SurviveSalt ,NSF| NRT: Plants-3D (Discover, Design and Deploy): Training Diverse Graduate Student Cohorts in Plant Synthetic Biology ,NWO| The plant PIP2 interactome – Shedding Light onto the Plant's Response to Heat- and Osmotic Stress ,HRZZ| Coordination reactions of macrocyclic ligands in solutionPaul E Verslues; Julia Bailey-Serres; Craig Brodersen; Thomas N Buckley; Lucio Conti; Alexander Christmann; José R Dinneny; Erwin Grill; Scott Hayes; Robert W Heckman; Po-Kai Hsu; Thomas E Juenger; Paloma Mas; Teun Munnik; Hilde Nelissen; Lawren Sack; Julian I Schroeder; Christa Testerink; Stephen D Tyerman; Taishi Umezawa; Philip A Wigge;pmid: 36018271
pmc: PMC9806664
Abstract We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Archivio Istituziona... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/48k7s53nData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAReview . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Plant CellReview . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio Istituziona... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/48k7s53nData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAReview . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Plant CellReview . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Michael P. Ricketts; Robert W. Heckman; Philip A. Fay; Roser Matamala; Julie D. Jastrow; Felix B. Fritschi; Jason Bonnette; Thomas E. Juenger;doi: 10.1111/gcbb.13046
AbstractSwitchgrass, a potential biofuel crop, is a genetically diverse species with phenotypic plasticity enabling it to grow in a range of environments. Two primary divergent ecotypes, uplands and lowlands, exhibit trait combinations representative of acquisitive and conservative growth allocation strategies, respectively. Whether these ecotypes respond differently to various types of environmental drivers remains unclear but is crucial to understanding how switchgrass varieties will respond to climate change. We grew two upland, two lowland, and two intermediate/hybrid cultivars of switchgrass at three sites along a latitudinal gradient in the central United States. Over a 4‐year period, we measured plant functional traits and biomass yields and evaluated genotype‐by‐environment (G × E) interaction effects by analyzing switchgrass responses to soil and climate variables. We found substantial evidence of G × E interactions on biomass yield, primarily due to deviations in the response of the southern lowland cultivar Alamo, which produced more biomass in hotter and drier environments relative to other cultivars. While lowland cultivars had the highest potential for yield, their yields were more variable year‐to‐year compared to other cultivars, suggesting greater sensitivity to environmental perturbations. Models comparing soil and climate principal components as explanatory variables revealed soil properties, especially nutrients, to be most effective at predicting switchgrass biomass yield. Also, positive correlations between biomass yield and conservative plant traits, such as high stem mass and tiller height, became stronger at lower latitudes where the climate is hotter and drier, regardless of ecotype. Lowland cultivars, however, showed a greater predisposition to exhibit these conservative traits. These results suggest switchgrass trait allocation trade‐offs that prioritize aboveground biomass production are more tightly associated in hot, dry environments and that lowland cultivars may exhibit a more specialized strategy relative to other cultivars. Altogether, this research provides essential knowledge for improving the viability of switchgrass as a biofuel crop.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Oxford University Press (OUP) Funded by:UKRI | SCORE: Supply Chain Optim...UKRI| SCORE: Supply Chain Optimisation for demand Response EfficiencyNancy A Eckardt; Sean Cutler; Thomas E Juenger; Amy Marshall-Colon; Michael Udvardi; Paul E Verslues;The Plant Cell arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Plant Cell arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plcell/koac329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Oxford University Press (OUP) Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthNeal W Tilhou; Jason Bonnette; Arvid R Boe; Philip A Fay; Felix B Fritschi; Robert B Mitchell; Francis M Rouquette; Yanqi Wu; Julie D Jastrow; Michael Ricketts; Shelley D Maher; Thomas E Juenger; David B Lowry;Abstract Switchgrass is a potential crop for bioenergy or carbon capture schemes, but further yield improvements through selective breeding are needed to encourage commercialization. To identify promising switchgrass germplasm for future breeding efforts, we conducted multisite and multitrait genomic prediction with a diversity panel of 630 genotypes from 4 switchgrass subpopulations (Gulf, Midwest, Coastal, and Texas), which were measured for spaced plant biomass yield across 10 sites. Our study focused on the use of genomic prediction to share information among traits and environments. Specifically, we evaluated the predictive ability of cross-validation (CV) schemes using only genetic data and the training set (cross-validation 1: CV1), a subset of the sites (cross-validation 2: CV2), and/or with 2 yield surrogates (flowering time and fall plant height). We found that genotype-by-environment interactions were largely due to the north–south distribution of sites. The genetic correlations between the yield surrogates and the biomass yield were generally positive (mean height r = 0.85; mean flowering time r = 0.45) and did not vary due to subpopulation or growing region (North, Middle, or South). Genomic prediction models had CV predictive abilities of −0.02 for individuals using only genetic data (CV1), but 0.55, 0.69, 0.76, 0.81, and 0.84 for individuals with biomass performance data from 1, 2, 3, 4, and 5 sites included in the training data (CV2), respectively. To simulate a resource-limited breeding program, we determined the predictive ability of models provided with the following: 1 site observation of flowering time (0.39); 1 site observation of flowering time and fall height (0.51); 1 site observation of fall height (0.52); 1 site observation of biomass (0.55); and 5 site observations of biomass yield (0.84). The ability to share information at a regional scale is very encouraging, but further research is required to accurately translate spaced plant biomass to commercial-scale sward biomass performance.
G3: Genes, Genomes, ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/g3journal/jkae159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert G3: Genes, Genomes, ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/g3journal/jkae159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: P. Camilla Durant; Amit Bhasin; Thomas E. Juenger; Robert W. Heckman;doi: 10.1002/ajb2.16349
pmid: 38783552
AbstractPremiseLeaf tensile resistance, a leaf's ability to withstand pulling forces, is an important determinant of plant ecological strategies. One potential driver of leaf tensile resistance is growing season length. When growing seasons are long, strong leaves, which often require more time and resources to construct than weak leaves, may be more advantageous than when growing seasons are short. Growing season length and other ecological conditions may also impact the morphological traits that underlie leaf tensile resistance.MethodsTo understand variation in leaf tensile resistance, we measured size‐dependent leaf strength and size‐independent leaf toughness in diverse genotypes of the widespread perennial grass Panicum virgatum (switchgrass) in a common garden. We then used quantitative genetic approaches to estimate the heritability of leaf tensile resistance and whether there were genetic correlations between leaf tensile resistance and other morphological traits.ResultsLeaf tensile resistance was positively associated with aboveground biomass (a proxy for fitness). Moreover, both measures of leaf tensile resistance exhibited high heritability and were positively genetically correlated with leaf lamina thickness and leaf mass per area (LMA). Leaf tensile resistance also increased with the growing season length in the habitat of origin, and this effect was mediated by both LMA and leaf thickness.ConclusionsDifferences in growing season length may promote selection for different leaf lifespans and may explain existing variation in leaf tensile resistance in P. virgatum. In addition, the high heritability of leaf tensile resistance suggests that P. virgatum will be able to respond to climate change as growing seasons lengthen.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.16349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.16349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:NSF | EVO-LTER: Leveraging long...NSF| EVO-LTER: Leveraging long-term ecological research in grasslands: facilitating collaborations between ecologists and evolutionary biologistsAuthors: Jennifer M. Cocciardi; Ava M. Hoffman; Diego F. Alvarado-Serrano; Jill Anderson; +30 AuthorsJennifer M. Cocciardi; Ava M. Hoffman; Diego F. Alvarado-Serrano; Jill Anderson; Meghan Blumstein; Emma L. Boehm; Lana G. Bolin; Israel T. Borokini; Gideon S. Bradburd; Haley A. Branch; Lars A. Brudvig; Yanni Chen; Scott L. Collins; David L. Des Marais; Diana Gamba; Niall P. Hanan; Mia M. Howard; Joseph Jaros; Thomas E. Juenger; Nicholas J. Kooyers; Ezra J. Kottler; Jennifer A. Lau; Mitra Menon; David A. Moeller; Thomas J. Mozdzer; Seema N. Sheth; Melinda Smith; Katherine Toll; Mark C. Ungerer; Megan L. Vahsen; Susana M. Wadgymar; Amy Waananen; Kenneth D. Whitney; Meghan L. Avolio;pmid: 39095611
Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change. For ecologists, we outline how long-term ecological experiments can be expanded for evolutionary inquiry, and for evolutionary biologists, we illustrate how observed long-term ecological patterns may motivate new evolutionary questions. We advocate for collaborative, multi-site investigations and discuss barriers to conducting evolutionary work at network sites. Ultimately, these networks offer valuable information and opportunities to improve predictions of species' responses to global change.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02464-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02464-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu