- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009 United Kingdom, United States, Australia, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Molecular Analysis of Chl..., NSF | Starter Grant: Ecophysiol...NSF| Molecular Analysis of Chlamydomonas Mating-Type Locus ,NSF| Starter Grant: Ecophysiology of Marine Picoeukaryotic Primary ProducersWilliam Lanier; Igor V. Grigoriev; Inna Dubchak; Marie L. Cuvelier; Marie L. Cuvelier; Peter von Dassow; Ian T. Paulsen; Jonathan H. Badger; Carolyn A. Napoli; Elodie Foulon; Hervé Moreau; Aaron Poliakov; Chelle L. Gentemann; Stephane Rombauts; Bernard Henrissat; Jeremy Schmutz; Jeremy Schmutz; Eve Toulza; Elif Demir; Jasmyn Pangilinan; Meredith V. Everett; E. Virginia Armbrust; Jill E. Gready; Tania Wyss; Alex N. Zelensky; Ursula Goodenough; Susan Lucas; Alexandra Z. Worden; Erika Lindquist; Olivier Panaud; Klaus F. X. Mayer; Wenche Eikrem; Steven Robbens; Jae-Hyeok Lee; Jane Grimwood; Jane Grimwood; Thomas Mock; Robert Otillar; Sarah M. McDonald; Kemin Zhou; Debashish Bhattacharya; Benoît Piégu; Uwe John; Pedro M. Coutinho; Yves Van de Peer; Andrew E. Allen; Heidrun Gundlach; Andrea Aerts; Fabrice Not; Aasf Salamov; Melinda P. Simmons; Pierre Rouzé; Micaela S. Parker; Evelyne Derelle;Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18 S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/7c83j3jrData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/7c83j3jrData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Informa UK Limited Singh, Amit Kumar; Sharma, Nikunj; Farooqi, Humaira; Abdin, Malik Zainul; Mock, Thomas; Kumar, Shashi;pmid: 28156133
Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2017.1284758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2017.1284758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Frontiers Media SA Funded by:UKRI | Limits to Evolutionary Ad..., TARA | Tara Oceans, UKRI | From the North Sea to the...UKRI| Limits to Evolutionary Adaptation of Phytoplankton in the Arctic Ocean ,TARA| Tara Oceans ,UKRI| From the North Sea to the Arctic Ocean: The impact of temperature on eukaryotic phytoplanktonAuthors: Reuben Gilbertson; Emma Langan; Emma Langan; Thomas Mock;Diatoms, a key group of polar marine microbes, support highly productive ocean ecosystems. Like all life on earth, diatoms do not live in isolation, and they are therefore under constant biotic and abiotic pressures which directly influence their evolution through natural selection. Despite their importance in polar ecosystems, polar diatoms are understudied compared to temperate species. The observed rapid change in the polar climate, especially warming, has created increased research interest to discover the underlying causes and potential consequences on single species to entire ecosystems. Next-Generation Sequencing (NGS) technologies have greatly expanded our knowledge by revealing the molecular underpinnings of physiological adaptations to polar environmental conditions. Their genomes, transcriptomes, and proteomes together with the first eukaryotic meta-omics data of surface ocean polar microbiomes reflect the environmental pressures through adaptive responses such as the expansion of protein families over time as a consequence of selection. Polar regions and their microbiomes are inherently connected to climate cycles and their feedback loops. An integrated understanding built on “omics” resources centered around diatoms as key primary producers will enable us to reveal unifying concepts of microbial co-evolution and adaptation in polar oceans. This knowledge, which aims to relate past environmental changes to specific adaptations, will be required to improve climate prediction models for polar ecosystems because it provides a unifying framework of how interacting and co-evolving biological communities might respond to future environmental change.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.786764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.786764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United KingdomPublisher:Wiley Dong Xu; Wen T. Han; Thomas Mock; Georgina Brennan; Le Xu; Naihao Ye; David A. Hutchins; Andrew McMinn; Andrew McMinn; Xiao W. Zhang; Xiao Fan;doi: 10.1111/gcb.14467
pmid: 30295390
AbstractKelp are main iodine accumulators in the ocean, and their growth and photosynthesis are likely to benefit from elevated seawater CO2 levels due to ocean acidification. However, there are currently no data on the effects of ocean acidification on iodine metabolism in kelp. As key primary producers in coastal ecosystems worldwide, any change in their iodine metabolism caused by climate change will potentially have important consequences for global geochemical cycles of iodine, including iodine levels of coastal food webs that underpin the nutrition of billions of humans around the world. Here, we found that elevated pCO2 enhanced growth and increased iodine accumulation not only in the model kelp Saccharina japonica using both short‐term laboratory experiment and long‐term in situ mesocosms, but also in several other edible and ecologically significant seaweeds using long‐term in situ mesocosms. Transcriptomic and proteomic analysis of S. japonica revealed that most vanadium‐dependent haloperoxidase genes involved in iodine efflux during oxidative stress are down‐regulated under increasing pCO2, suggesting that ocean acidification alleviates oxidative stress in kelp, which might contribute to their enhanced growth. When consumed by abalone (Haliotis discus), elevated iodine concentrations in S. japonica caused increased iodine accumulation in abalone, accompanied by reduced synthesis of thyroid hormones. Thus, our results suggest that kelp will benefit from ocean acidification by a reduction in environmental stress however; iodine levels, in kelp‐based coastal food webs will increase, with potential impacts on biogeochemical cycles of iodine in coastal ecosystems.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United States, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Funded by:UKRI | Limits to Evolutionary Ad...UKRI| Limits to Evolutionary Adaptation of Phytoplankton in the Arctic OceanNeha Varghese; Natalia Ivanova; Willem H. van de Poll; Nikos C. Kyrpides; Igor V. Grigoriev; Igor V. Grigoriev; Allison A. Fong; Chris Daum; Simon Roux; Timothy M. Lenton; T. B. K. Reddy; Marcel Huntemann; Klaas R. Timmermans; Susannah G. Tringe; Krishnaveni Palaniappan; Chris A. Boulton; Brian Foster; Andrew Toseland; Bank Beszteri; Michael Ginzburg; Corina P. D. Brussaard; Vincent Moulton; Emiley A. Eloe-Fadrosh; Erika Lindquist; Richard M. Leggett; Alicia Clum; Kerrie Barry; Kara Martin; Kara Martin; Klaus Valentin; Katrin Schmidt; Mariam R Rizkallah; Bryce Foster; Thomas Mock; Supratim Mukherjee;pmid: 34531387
pmc: PMC8446083
AbstractEukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2021License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/34531387Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5ph8h7p3Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2021License: CC BYData sources: University of Groningen Research PortalElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CentereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25646-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2021License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/34531387Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5ph8h7p3Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2021License: CC BYData sources: University of Groningen Research PortalElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CentereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25646-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | EI3POD, UKRI | Functional adaptation of ..., UKRI | Global significance of li...EC| EI3POD ,UKRI| Functional adaptation of diatoms to environmental conditions in sea ice of the Southern Ocean ,UKRI| Global significance of light-driven proton pumps in eukaryotic marine phytoplanktonStrauss, Jan; Deng, Longji; Gao, Shiqiang; Toseland, Andrew; Bachy, Charles; Zhang, Chong; Kirkham, Amy; Hopes, Amanda; Utting, Robert; Joest, Eike; Tagliabue, Alessandro; Löw, Christian; Worden, Alexandra; Nagel, Georg; Mock, Thomas;pmid: 37845316
pmc: PMC10627834
AbstractMicrobial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-023-01498-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-023-01498-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009 United Kingdom, United States, Australia, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Molecular Analysis of Chl..., NSF | Starter Grant: Ecophysiol...NSF| Molecular Analysis of Chlamydomonas Mating-Type Locus ,NSF| Starter Grant: Ecophysiology of Marine Picoeukaryotic Primary ProducersWilliam Lanier; Igor V. Grigoriev; Inna Dubchak; Marie L. Cuvelier; Marie L. Cuvelier; Peter von Dassow; Ian T. Paulsen; Jonathan H. Badger; Carolyn A. Napoli; Elodie Foulon; Hervé Moreau; Aaron Poliakov; Chelle L. Gentemann; Stephane Rombauts; Bernard Henrissat; Jeremy Schmutz; Jeremy Schmutz; Eve Toulza; Elif Demir; Jasmyn Pangilinan; Meredith V. Everett; E. Virginia Armbrust; Jill E. Gready; Tania Wyss; Alex N. Zelensky; Ursula Goodenough; Susan Lucas; Alexandra Z. Worden; Erika Lindquist; Olivier Panaud; Klaus F. X. Mayer; Wenche Eikrem; Steven Robbens; Jae-Hyeok Lee; Jane Grimwood; Jane Grimwood; Thomas Mock; Robert Otillar; Sarah M. McDonald; Kemin Zhou; Debashish Bhattacharya; Benoît Piégu; Uwe John; Pedro M. Coutinho; Yves Van de Peer; Andrew E. Allen; Heidrun Gundlach; Andrea Aerts; Fabrice Not; Aasf Salamov; Melinda P. Simmons; Pierre Rouzé; Micaela S. Parker; Evelyne Derelle;Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18 S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/7c83j3jrData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/7c83j3jrData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Informa UK Limited Singh, Amit Kumar; Sharma, Nikunj; Farooqi, Humaira; Abdin, Malik Zainul; Mock, Thomas; Kumar, Shashi;pmid: 28156133
Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2017.1284758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2017.1284758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Frontiers Media SA Funded by:UKRI | Limits to Evolutionary Ad..., TARA | Tara Oceans, UKRI | From the North Sea to the...UKRI| Limits to Evolutionary Adaptation of Phytoplankton in the Arctic Ocean ,TARA| Tara Oceans ,UKRI| From the North Sea to the Arctic Ocean: The impact of temperature on eukaryotic phytoplanktonAuthors: Reuben Gilbertson; Emma Langan; Emma Langan; Thomas Mock;Diatoms, a key group of polar marine microbes, support highly productive ocean ecosystems. Like all life on earth, diatoms do not live in isolation, and they are therefore under constant biotic and abiotic pressures which directly influence their evolution through natural selection. Despite their importance in polar ecosystems, polar diatoms are understudied compared to temperate species. The observed rapid change in the polar climate, especially warming, has created increased research interest to discover the underlying causes and potential consequences on single species to entire ecosystems. Next-Generation Sequencing (NGS) technologies have greatly expanded our knowledge by revealing the molecular underpinnings of physiological adaptations to polar environmental conditions. Their genomes, transcriptomes, and proteomes together with the first eukaryotic meta-omics data of surface ocean polar microbiomes reflect the environmental pressures through adaptive responses such as the expansion of protein families over time as a consequence of selection. Polar regions and their microbiomes are inherently connected to climate cycles and their feedback loops. An integrated understanding built on “omics” resources centered around diatoms as key primary producers will enable us to reveal unifying concepts of microbial co-evolution and adaptation in polar oceans. This knowledge, which aims to relate past environmental changes to specific adaptations, will be required to improve climate prediction models for polar ecosystems because it provides a unifying framework of how interacting and co-evolving biological communities might respond to future environmental change.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.786764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.786764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United KingdomPublisher:Wiley Dong Xu; Wen T. Han; Thomas Mock; Georgina Brennan; Le Xu; Naihao Ye; David A. Hutchins; Andrew McMinn; Andrew McMinn; Xiao W. Zhang; Xiao Fan;doi: 10.1111/gcb.14467
pmid: 30295390
AbstractKelp are main iodine accumulators in the ocean, and their growth and photosynthesis are likely to benefit from elevated seawater CO2 levels due to ocean acidification. However, there are currently no data on the effects of ocean acidification on iodine metabolism in kelp. As key primary producers in coastal ecosystems worldwide, any change in their iodine metabolism caused by climate change will potentially have important consequences for global geochemical cycles of iodine, including iodine levels of coastal food webs that underpin the nutrition of billions of humans around the world. Here, we found that elevated pCO2 enhanced growth and increased iodine accumulation not only in the model kelp Saccharina japonica using both short‐term laboratory experiment and long‐term in situ mesocosms, but also in several other edible and ecologically significant seaweeds using long‐term in situ mesocosms. Transcriptomic and proteomic analysis of S. japonica revealed that most vanadium‐dependent haloperoxidase genes involved in iodine efflux during oxidative stress are down‐regulated under increasing pCO2, suggesting that ocean acidification alleviates oxidative stress in kelp, which might contribute to their enhanced growth. When consumed by abalone (Haliotis discus), elevated iodine concentrations in S. japonica caused increased iodine accumulation in abalone, accompanied by reduced synthesis of thyroid hormones. Thus, our results suggest that kelp will benefit from ocean acidification by a reduction in environmental stress however; iodine levels, in kelp‐based coastal food webs will increase, with potential impacts on biogeochemical cycles of iodine in coastal ecosystems.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United States, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Funded by:UKRI | Limits to Evolutionary Ad...UKRI| Limits to Evolutionary Adaptation of Phytoplankton in the Arctic OceanNeha Varghese; Natalia Ivanova; Willem H. van de Poll; Nikos C. Kyrpides; Igor V. Grigoriev; Igor V. Grigoriev; Allison A. Fong; Chris Daum; Simon Roux; Timothy M. Lenton; T. B. K. Reddy; Marcel Huntemann; Klaas R. Timmermans; Susannah G. Tringe; Krishnaveni Palaniappan; Chris A. Boulton; Brian Foster; Andrew Toseland; Bank Beszteri; Michael Ginzburg; Corina P. D. Brussaard; Vincent Moulton; Emiley A. Eloe-Fadrosh; Erika Lindquist; Richard M. Leggett; Alicia Clum; Kerrie Barry; Kara Martin; Kara Martin; Klaus Valentin; Katrin Schmidt; Mariam R Rizkallah; Bryce Foster; Thomas Mock; Supratim Mukherjee;pmid: 34531387
pmc: PMC8446083
AbstractEukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2021License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/34531387Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5ph8h7p3Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2021License: CC BYData sources: University of Groningen Research PortalElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CentereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25646-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2021License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/34531387Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5ph8h7p3Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2021License: CC BYData sources: University of Groningen Research PortalElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CentereScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25646-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | EI3POD, UKRI | Functional adaptation of ..., UKRI | Global significance of li...EC| EI3POD ,UKRI| Functional adaptation of diatoms to environmental conditions in sea ice of the Southern Ocean ,UKRI| Global significance of light-driven proton pumps in eukaryotic marine phytoplanktonStrauss, Jan; Deng, Longji; Gao, Shiqiang; Toseland, Andrew; Bachy, Charles; Zhang, Chong; Kirkham, Amy; Hopes, Amanda; Utting, Robert; Joest, Eike; Tagliabue, Alessandro; Löw, Christian; Worden, Alexandra; Nagel, Georg; Mock, Thomas;pmid: 37845316
pmc: PMC10627834
AbstractMicrobial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-023-01498-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-023-01498-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu