- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Part of book or chapter of book 2006Publisher:AIP Olioso, Albert; Rivalland, Vincent; Faivre, Robert; Weiss, Marie; Demarty, J.; Wassenaar, Tom; Baret, Frédéric; Cardot, H.; Rossello, Philippe; Jacob, Frédéric; Hasager, Charlotte Bay; Inoue, Yoshio;doi: 10.1063/1.2349349
Remote sensing estimation of evapotranspiration (ET) was done by combining remote sensing data and the ISBA soil‐vegetation‐atmosphere transfer model over the Alpilles test site. We tested the possible use of low resolution data (∼1km) to derive leaf area index (LAI) at the field scale using a disaggregation method. Disaggregated LAI were then used as inputs of ISBA for monitoring ET for 9 months. Estimation of LAI and ET were first performed at high resolution for being used as reference for evaluating the use of low resolution data. Estimations of LAI at high spatial resolution using an artificial neural network (ANN) algorithm were in very good agreement with ground measurements. At low resolution, we found that it was possible to estimate accurately LAI for the most frequent types of vegetation cover, wheat and sunflower, but not for the other types. However, the estimation of ET from disaggregated low resolution data was found to be quite accurate for any type of vegetation cover (the comparison to h...
HAL-IRD arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL-IRD arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type , Part of book or chapter of book 2006Publisher:AIP Olioso, Albert; Rivalland, Vincent; Faivre, Robert; Weiss, Marie; Demarty, J.; Wassenaar, Tom; Baret, Frédéric; Cardot, H.; Rossello, Philippe; Jacob, Frédéric; Hasager, Charlotte Bay; Inoue, Yoshio;doi: 10.1063/1.2349349
Remote sensing estimation of evapotranspiration (ET) was done by combining remote sensing data and the ISBA soil‐vegetation‐atmosphere transfer model over the Alpilles test site. We tested the possible use of low resolution data (∼1km) to derive leaf area index (LAI) at the field scale using a disaggregation method. Disaggregated LAI were then used as inputs of ISBA for monitoring ET for 9 months. Estimation of LAI and ET were first performed at high resolution for being used as reference for evaluating the use of low resolution data. Estimations of LAI at high spatial resolution using an artificial neural network (ANN) algorithm were in very good agreement with ground measurements. At low resolution, we found that it was possible to estimate accurately LAI for the most frequent types of vegetation cover, wheat and sunflower, but not for the other types. However, the estimation of ET from disaggregated low resolution data was found to be quite accurate for any type of vegetation cover (the comparison to h...
HAL-IRD arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL-IRD arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
