- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ArgentinaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Diego Rivelino Espinoza Trejo; S. Taheri; Jose L. Saavedra; Patricia Vazquez; Cristian H. De Angelo; Jose A. Pecina-Sanchez;handle: 11336/172388
Distributed maximum power point tracking photovoltaic (PV) systems based on series-connected dc/dc converters are one of the most promising PV configurations for an enhanced security and efficiency in distributed generation systems. Most of the works reported so far in the literature for control and stability analysis of these configurations are based on small-signal ac models. This could be a significant limitation, as this kind of linearization produces a good approximation of the nonlinear model of series-connected dc/dc converters only at the operating point. However, PV systems must be controlled for a large set of operating points with a satisfactory performance and robustness. Moreover, stability analysis of series-connected dc/dc converters has not yet been widely discussed in previous research. Therefore, this article presents a nonlinear model of series-connected boost dc/dc converters and develops control and stability analysis to fill the gap in this emerging topic. A systematic experimental and numerical investigation is performed in order to validate the effectiveness of the proposed control approach in this study.
CONICET Digital arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CONICET Digital arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ArgentinaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Diego Rivelino Espinoza Trejo; S. Taheri; Jose L. Saavedra; Patricia Vazquez; Cristian H. De Angelo; Jose A. Pecina-Sanchez;handle: 11336/172388
Distributed maximum power point tracking photovoltaic (PV) systems based on series-connected dc/dc converters are one of the most promising PV configurations for an enhanced security and efficiency in distributed generation systems. Most of the works reported so far in the literature for control and stability analysis of these configurations are based on small-signal ac models. This could be a significant limitation, as this kind of linearization produces a good approximation of the nonlinear model of series-connected dc/dc converters only at the operating point. However, PV systems must be controlled for a large set of operating points with a satisfactory performance and robustness. Moreover, stability analysis of series-connected dc/dc converters has not yet been widely discussed in previous research. Therefore, this article presents a nonlinear model of series-connected boost dc/dc converters and develops control and stability analysis to fill the gap in this emerging topic. A systematic experimental and numerical investigation is performed in order to validate the effectiveness of the proposed control approach in this study.
CONICET Digital arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CONICET Digital arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
