- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yuewen Shao; Chao Li; Mengjiao Fan; Guoming Gao; Stelgen Inkoua; Lijun Zhang; Shu Zhang; Jun Xiang; Song Hu; Xun Hu;Green Chemical Engin... arrow_drop_down Green Chemical EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gce.2023.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Green Chemical Engin... arrow_drop_down Green Chemical EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gce.2023.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Shu Zhang; Jun Xiang; Haisheng Lin; Yi Wang; Xun Hu; Qingyin Li; Mortaza Gholizadeh; Song Hu; Xiangzhou Yuan;pmid: 34118669
Co-hydrothermal carbonization (HTC) of livestock manure and biomass might improve the fuel properties of the hydrochar due to the high reactivity of the biomass-derived intermediates with the abundant oxygen-containing functionalities. However, the complicated compositions make it difficult to explicit the specific roles of the individual components of biomass played in the co-HTC process. In this study, cellulose was used for co-HTC with swine manure to investigate the influence on the properties of the hydrochar. The yield of hydrochar obtained from co-HTC reduced gradually with the cellulose proportion increased, and the solid yield was lower than the theoretical value. This was because the cellulose-derived intermediates favored the stability of the fragments from hydrolysis of swine manure. The increased temperature resulted in the reduction of the hydrochar yield whereas the prolonged time enhanced the formation of solid product. The interaction of the co-HTC intermediates facilitated the formation of O-containing species, thus making the solid more oxygen- and hydrogen-rich with a higher volatility. In addition, the co-HTC affected the evolution of functionalities like -OH and CO during the thermal treatment of the hydrochar and altered its morphology by stuffing the pores from swine manure-derived solid with the microspheres from HTC of cellulose. The interaction of the varied intermediates also impacted the formation of amines, ketones, carboxylic acids, esters, aromatics and the polymeric products in distinct ways.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Chao Li; Baihong Li; Li Qiu; Kai Sun; Lijun Zhang; Shu Zhang; Lei Zhang; Jun Xiang; Song Hu; Yi Wang; Xun Hu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2024.107146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2024.107146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Song Hu; Mohamed E. Mostafa; Mohamed E. Mostafa; Xun Hu; Jun Xiang; Yi Wang; Sheng Su; Saad A. El-Sayed; Zhang Yufei;Biomass pelletization technology overcame the poor utilization and handling properties of loose materials. The quality of pellets is sensitive to the pelletization conditions. In this work the impact of the operating parameters as pressure, temperature, and moisture content on the mechanical characteristics as the compression strength ( $${\sigma }_{max}$$ ) and durability ( $$Du$$ ) and energy consumption for both production ( $${E}_{c,p}$$ ) and ejection ( $${E}_{c,ej}$$ ) of rice straw (RS) pellets was studied. Furthermore, the synergic effect of these parameters on the pellet characteristics was evaluated at the optimum conditions. The operating parameters were optimized using a multi-objective optimization approach of Response Surface Method (RSM) based on the predicted significant models that describe the physical characteristics of the pellets. The optimization results showed that high quality pellets could be produced at a pressure of 68.4 MPa, temperature of 110.0 °C, and moisture of 8.2% for solid pellets and 63.6 MPa, 110.0 °C, and 8.7% for hollow pellets. Significant individual and interaction effects of all independent parameters on the pellets characteristics were investigated using statistical analysis results, main plot curves and 2D interaction contour plots. New significant empirical dimensionless relationships that correlate the characteristics of pellets were proposed. These relationships can be generalized for any type of pellets that produced under various operating conditions. Hollow pellets are recommended to be used in the industrial sector due to their enhanced heat transfer which resulted from the high surface to volume ratio besides their ease production at normal operating condition similar to that required for solid pellets.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01437-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01437-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Xin Shen; Baihe Guo; Xiaolei Qiao; Yanlin Wang; Jun Xiang; Yan Jin; Jingnan Guo;Abstract Using power plant fly ash to prepare CO2 adsorbent can not only realize low-carbon power in power plants, but also effectively use solid waste to achieve the objective of treating the waste with waste. Regeneration characteristic is an important performance of adsorbent. Through the temperature programmed desorption experiment, the influence of different regeneration conditions on performance and regeneration kinetics can be studied, and the optimal calculation of regeneration conditions can be carried out, so as to realize the recycling of adsorbent with economic benefits. The optimal regeneration temperature and heating rate were 150 °C and 10 °C/min, respectively. Under these conditions, the desorption capacity was 1.7454 mmol/g, and the desorption efficiency was 86.38%. Avrami fraction kinetic model was used to simulate and calculate the regeneration kinetics of adsorbent. The results showed that the regeneration temperature affected the regeneration mechanism. High regeneration temperature and high heating rate could promote the desorption kinetic rate to increase. When the regeneration temperature was 90 °C and 190 °C, ka was 0.000885 min−1 and 0.001318 min−1 respectively. Three kinds of diffusion were used to study the regeneration mechanism. It was concluded that after the regeneration temperature was higher than the chemical desorption temperature, the desorption regeneration could be divided into early, middle and final stages, and the rate controlling steps were respectively: intraparticle diffusion control, joint control of surface chemical reaction and intraparticle diffusion, and membrane diffusion control. Physical desorption occured when the regeneration temperature was lower than 110 °C. The desorption time was longer and CO2 concentration released was always low.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.127865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.127865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hengda Han; Long Jiang; Kuan Du; Changyi Liu; Liangcai Liu; Zhe Xiong; Song Hu; Yi Wang; Sheng Su; Jun Xiang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.124099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.124099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hengda, Han; Aishu, Li; Meng, Zhu; Song, Hu; Jun, Xu; Zhe, Xiong; Qiangqiang, Ren; Yi, Wang; Long, Jiang; Sheng, Su; Jun, Xiang;pmid: 36055490
Sludge pyrolysis and biomass gasification integrated process (SPBG) is an attractive route for the comprehensive utilization of the two materials but more tar is produced in this process compared to traditional biomass steam gasification. Nitrogen-containing compounds in the tar bring threatens to the environment and heavy components in the tar contributes to undesired coke formation. In current study, the evolution of heavy tar, especially the nitrogen-rich components, during SPBG is revealed for the first time. It was found that heavy components were mainly distributed in the mass range of 150-450 Da, where aromatics consisted of carbon, hydrogen and nitrogen atoms were the most abundant. Deamination (NH3) and the combination of quinoline accompanied with the generation of the heavy components. Organics from sludge could react with biomass to form heavier oxygen-containing molecules. Meanwhile, steam from sludge promoted heavy components to crack by tar reforming reactions and consumed radicals in bio-char to inhibit the catalytic cracking of tar. Under the combination of above reactions, more heavy molecules were generated at low sludge volatile/biomass ratio and the aromatic content in the heavy tar decreased at high sludge volatile/biomass ratio.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.158107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.158107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Liqun Ma; Syed Shatir A. Syed-Hassan; Yuxing Tong; Zhe Xiong; Yuanjing Chen; Jun Xu; Long Jiang; Sheng Su; Song Hu; Yi Wang; Jun Xiang;Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2022.107536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2022.107536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Abdulmajid Abdullahi Shagali; Song Hu; Hanjian Li; Huanying Chi; Haoran Qing; Jun Xu; Long Jiang; Yi Wang; Sheng Su; Jun Xiang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Yi Wang; Xiong Zhe; Wang Xuepeng; Sheng Su; Han Hengda; Long Jiang; Chun Ho Lam; Xu Jun; Jun Xiang; Wei Deng; Song Hu;Abstract The electrochemical method has emerged as a novel option for bio-oil upgrading due to the advantages of having mild reaction conditions, control convenience and carbon neutrality. Bio-oil is easy to form coke even at low current densities during electrochemical upgrades of bio-oil. Unveiling the coke evolution during the electrochemical processing of bio-oil is essential to enable both oil-to-material and oil-to-fuel strategies. Here, we investigate the coke formation behaviors during the electrochemical processing of bio-oil. The coke comes primarily from the polymerization of aromatic components. The reaction time and current density have a promoting effect on the coke yields. The current density has an accelerating influence on the morphological evolution of the coke. The O-containing groups increases slightly with the increasing reaction time and current density. The large to small ring ratio of the coke is similar under different reaction time and current densities. The potential applications as carbon materials of the coke formed from bio-oil via electrochemical polymerization are discussed based on its physical morphology and chemical structure.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2021.107036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2021.107036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yuewen Shao; Chao Li; Mengjiao Fan; Guoming Gao; Stelgen Inkoua; Lijun Zhang; Shu Zhang; Jun Xiang; Song Hu; Xun Hu;Green Chemical Engin... arrow_drop_down Green Chemical EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gce.2023.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Green Chemical Engin... arrow_drop_down Green Chemical EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gce.2023.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Shu Zhang; Jun Xiang; Haisheng Lin; Yi Wang; Xun Hu; Qingyin Li; Mortaza Gholizadeh; Song Hu; Xiangzhou Yuan;pmid: 34118669
Co-hydrothermal carbonization (HTC) of livestock manure and biomass might improve the fuel properties of the hydrochar due to the high reactivity of the biomass-derived intermediates with the abundant oxygen-containing functionalities. However, the complicated compositions make it difficult to explicit the specific roles of the individual components of biomass played in the co-HTC process. In this study, cellulose was used for co-HTC with swine manure to investigate the influence on the properties of the hydrochar. The yield of hydrochar obtained from co-HTC reduced gradually with the cellulose proportion increased, and the solid yield was lower than the theoretical value. This was because the cellulose-derived intermediates favored the stability of the fragments from hydrolysis of swine manure. The increased temperature resulted in the reduction of the hydrochar yield whereas the prolonged time enhanced the formation of solid product. The interaction of the co-HTC intermediates facilitated the formation of O-containing species, thus making the solid more oxygen- and hydrogen-rich with a higher volatility. In addition, the co-HTC affected the evolution of functionalities like -OH and CO during the thermal treatment of the hydrochar and altered its morphology by stuffing the pores from swine manure-derived solid with the microspheres from HTC of cellulose. The interaction of the varied intermediates also impacted the formation of amines, ketones, carboxylic acids, esters, aromatics and the polymeric products in distinct ways.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Chao Li; Baihong Li; Li Qiu; Kai Sun; Lijun Zhang; Shu Zhang; Lei Zhang; Jun Xiang; Song Hu; Yi Wang; Xun Hu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2024.107146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2024.107146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Song Hu; Mohamed E. Mostafa; Mohamed E. Mostafa; Xun Hu; Jun Xiang; Yi Wang; Sheng Su; Saad A. El-Sayed; Zhang Yufei;Biomass pelletization technology overcame the poor utilization and handling properties of loose materials. The quality of pellets is sensitive to the pelletization conditions. In this work the impact of the operating parameters as pressure, temperature, and moisture content on the mechanical characteristics as the compression strength ( $${\sigma }_{max}$$ ) and durability ( $$Du$$ ) and energy consumption for both production ( $${E}_{c,p}$$ ) and ejection ( $${E}_{c,ej}$$ ) of rice straw (RS) pellets was studied. Furthermore, the synergic effect of these parameters on the pellet characteristics was evaluated at the optimum conditions. The operating parameters were optimized using a multi-objective optimization approach of Response Surface Method (RSM) based on the predicted significant models that describe the physical characteristics of the pellets. The optimization results showed that high quality pellets could be produced at a pressure of 68.4 MPa, temperature of 110.0 °C, and moisture of 8.2% for solid pellets and 63.6 MPa, 110.0 °C, and 8.7% for hollow pellets. Significant individual and interaction effects of all independent parameters on the pellets characteristics were investigated using statistical analysis results, main plot curves and 2D interaction contour plots. New significant empirical dimensionless relationships that correlate the characteristics of pellets were proposed. These relationships can be generalized for any type of pellets that produced under various operating conditions. Hollow pellets are recommended to be used in the industrial sector due to their enhanced heat transfer which resulted from the high surface to volume ratio besides their ease production at normal operating condition similar to that required for solid pellets.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01437-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01437-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Xin Shen; Baihe Guo; Xiaolei Qiao; Yanlin Wang; Jun Xiang; Yan Jin; Jingnan Guo;Abstract Using power plant fly ash to prepare CO2 adsorbent can not only realize low-carbon power in power plants, but also effectively use solid waste to achieve the objective of treating the waste with waste. Regeneration characteristic is an important performance of adsorbent. Through the temperature programmed desorption experiment, the influence of different regeneration conditions on performance and regeneration kinetics can be studied, and the optimal calculation of regeneration conditions can be carried out, so as to realize the recycling of adsorbent with economic benefits. The optimal regeneration temperature and heating rate were 150 °C and 10 °C/min, respectively. Under these conditions, the desorption capacity was 1.7454 mmol/g, and the desorption efficiency was 86.38%. Avrami fraction kinetic model was used to simulate and calculate the regeneration kinetics of adsorbent. The results showed that the regeneration temperature affected the regeneration mechanism. High regeneration temperature and high heating rate could promote the desorption kinetic rate to increase. When the regeneration temperature was 90 °C and 190 °C, ka was 0.000885 min−1 and 0.001318 min−1 respectively. Three kinds of diffusion were used to study the regeneration mechanism. It was concluded that after the regeneration temperature was higher than the chemical desorption temperature, the desorption regeneration could be divided into early, middle and final stages, and the rate controlling steps were respectively: intraparticle diffusion control, joint control of surface chemical reaction and intraparticle diffusion, and membrane diffusion control. Physical desorption occured when the regeneration temperature was lower than 110 °C. The desorption time was longer and CO2 concentration released was always low.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.127865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.127865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hengda Han; Long Jiang; Kuan Du; Changyi Liu; Liangcai Liu; Zhe Xiong; Song Hu; Yi Wang; Sheng Su; Jun Xiang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.124099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.124099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hengda, Han; Aishu, Li; Meng, Zhu; Song, Hu; Jun, Xu; Zhe, Xiong; Qiangqiang, Ren; Yi, Wang; Long, Jiang; Sheng, Su; Jun, Xiang;pmid: 36055490
Sludge pyrolysis and biomass gasification integrated process (SPBG) is an attractive route for the comprehensive utilization of the two materials but more tar is produced in this process compared to traditional biomass steam gasification. Nitrogen-containing compounds in the tar bring threatens to the environment and heavy components in the tar contributes to undesired coke formation. In current study, the evolution of heavy tar, especially the nitrogen-rich components, during SPBG is revealed for the first time. It was found that heavy components were mainly distributed in the mass range of 150-450 Da, where aromatics consisted of carbon, hydrogen and nitrogen atoms were the most abundant. Deamination (NH3) and the combination of quinoline accompanied with the generation of the heavy components. Organics from sludge could react with biomass to form heavier oxygen-containing molecules. Meanwhile, steam from sludge promoted heavy components to crack by tar reforming reactions and consumed radicals in bio-char to inhibit the catalytic cracking of tar. Under the combination of above reactions, more heavy molecules were generated at low sludge volatile/biomass ratio and the aromatic content in the heavy tar decreased at high sludge volatile/biomass ratio.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.158107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.158107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Liqun Ma; Syed Shatir A. Syed-Hassan; Yuxing Tong; Zhe Xiong; Yuanjing Chen; Jun Xu; Long Jiang; Sheng Su; Song Hu; Yi Wang; Jun Xiang;Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2022.107536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2022.107536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Abdulmajid Abdullahi Shagali; Song Hu; Hanjian Li; Huanying Chi; Haoran Qing; Jun Xu; Long Jiang; Yi Wang; Sheng Su; Jun Xiang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Yi Wang; Xiong Zhe; Wang Xuepeng; Sheng Su; Han Hengda; Long Jiang; Chun Ho Lam; Xu Jun; Jun Xiang; Wei Deng; Song Hu;Abstract The electrochemical method has emerged as a novel option for bio-oil upgrading due to the advantages of having mild reaction conditions, control convenience and carbon neutrality. Bio-oil is easy to form coke even at low current densities during electrochemical upgrades of bio-oil. Unveiling the coke evolution during the electrochemical processing of bio-oil is essential to enable both oil-to-material and oil-to-fuel strategies. Here, we investigate the coke formation behaviors during the electrochemical processing of bio-oil. The coke comes primarily from the polymerization of aromatic components. The reaction time and current density have a promoting effect on the coke yields. The current density has an accelerating influence on the morphological evolution of the coke. The O-containing groups increases slightly with the increasing reaction time and current density. The large to small ring ratio of the coke is similar under different reaction time and current densities. The potential applications as carbon materials of the coke formed from bio-oil via electrochemical polymerization are discussed based on its physical morphology and chemical structure.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2021.107036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2021.107036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu