- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Martin Belusko; Ming Liu; N.H.S. Tay; Frank Bruno;Abstract The tube-in-tank is a compact configuration well suited for PCM thermal storage systems. However limited research has investigated the impact of the boundary condition applied to the PCM achieved through differing tube arrangements. In Part 1, using CFD and considering the discharging condition for CSP applications, it was determined that when the heat transfer fluid flow was in parallel, poor extraction of latent energy occurs, whereas in a counterflow arrangement maximum latent energy is extracted. In Part 2, the impact of mass flow rate and PCM thermal conductivity on the extraction of latent energy for these tube arrangements was investigated. It was discovered that the counterflow arrangement can experience poorer heat transfer which can be avoided through design. Furthermore, little investigation has considered the impact of the effectiveness of heat transfer with PCM systems with increased amounts of sensible energy, typical for CSP applications. It was determined that for latent dominant storage systems, the counterflow tube arrangement should be applied, while for sensible dominant PCM storage systems, parallel flow should be considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Frank Bruno; David Whaley; Martin Belusko; Timothy O'Leary;The rating of buildings using thermal models represents a contrasting regulatory approach to prescriptive measures to improve the energy efficiency of buildings. This paper investigates the relationship between measured household energy use for thermal comfort purposes and the modelled thermal energy calculated under the Nationwide House Energy Rating Scheme (NatHERS), which is used for the regulation of minimum energy performance standards for new housing in Australia. Two different sets of housing in Adelaide, South Australia which were built a decade apart and to significantly different energy performance standards represent the basis of this study. The results show that better insulated houses represented by higher stars under the NatHERS scheme do use less energy for heating and cooling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Chunrong Zhao; Michael Opolot; Patrick Keane; Ji Wang; Ming Liu; Frank Bruno; Simone Mancin; Kamel Hooman;In this work, melting of a high-temperature inorganic phase change material (PCM) eutectic (with a melting point of 569 °C) within a vertical cylindrical tank has been experimentally investigated. To promote the heat transfer rate, a periodic structure that is constructed by a commercial SS-304 mesh screen has been considered and immersed into the PCM tank. Thermal characteristics of the PCM-periodic structure tank under different initial temperatures (450, 490 and 546 °C) and wall temperatures (620, 640, 660, 680 and 700 °C), are then investigated and reported. The presented experimental data can facilitate practical engineers to find the best operating condition of similar PCM tanks; meanwhile, it can also be employed for the investigation of thermal response of transient heat conduction before melting starts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enss.2023.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enss.2023.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yanting Yin; Raihan Rumman; Benjamin A. Chambers; Ming Liu; Rhys Jacob; Frank Bruno; Martin Belusko; David A. Lewis; Gunther G. Andersson;Abstract Analysis of stainless steel 316 as a containment material in the presence of a phase change material (PCM) cycled at high temperature was carried out through a combination of X-ray photoelectron spectroscopy and X-ray diffraction methods. In this work, stainless steel tokens were half-immersed in a chloride carbonate-based PCM, which were then thermally cycled in an air or a nitrogen environment up to 500 times, allowing the PCM to repeatedly transform between solid and liquid phases. Spectroscopy and diffraction methods were applied on the tokens, as well as the cycled PCM, to investigate the extent and nature of corrosion in such steel alloys. With varying sputtering conditions, the oxidation state at different depths of token surfaces was quantified. From the outermost corroded layer through to the bulk, this study shows a gradual change in distribution in both Cr and oxidation of Fe, while Cr was specifically found to have depleted and migrated into the PCM. The oxidation and depletion have been found to increase with increasing exposure time to PCM while sigma-phase structure embrittled in the corrosion layer.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yanting Yin; Raihan Rumman; Benjamin A. Chambers; Ming Liu; Rhys Jacob; Martin Belusko; Frank Bruno; David A. Lewis; Gunther G. Andersson;Abstract The formation and mechanism that drive corrosion in stainless steel as a containment material in the presence of phase change materials is of importance in solar thermal energy storage systems. In our work, half-immersed stainless steel 316 tokens in a carbonate-based phase change material (PCM 638) have been investigated. The samples were thermally cycled in air and Nitrogen environment up to 500 times within a high-temperature range, allowing the PCM to transform between solid and liquid states repeatedly. As a consequence of thermal cycling, severe thickness loss on steel token was observed, indicating a degree of oxidation occurring, which depleted the uncorroded steel. Cross-sectional microstructural analysis was carried out to determine the elemental distribution and structural morphology along the corrosion layers. This study shows that thermal cycling of SS 316 in PCM results in active Ni and Cr migration to the surface, leading to a significant depletion of Cr from steel moving into the PCM. Cr and Fe on the surface are found to oxidise with varying degrees, with respect to the exposure time. The depletion of Cr was found to be higher in SS 316 immersed in PCM, while also increasing with exposure time.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016Publisher:Author(s) Authors: Soheila Riahi; N. H. S. Tay; Frank Bruno; Wasim Saman;doi: 10.1063/1.4949137
Numerical study of inward and outward melting of a high temperature PCM in cylindrical enclosures were performed, using FLUENT 15. For validation purposes, numerical modeling of inward melting of a low temperature PCM was initially conducted and the predicted results were compared with the experimental data from the literature. The validated model for the low temperature PCM was used for two high temperature cases; inward melting of a high temperature PCM in a cylindrical enclosure and outward melting in a cylindrical case with higher aspect ratio. The results of this study show that the numerical model developed is capable of capturing the details of melting process with buoyancy driven convection for Ra<108, i.e. laminar flow, for a high temperature PCM and can be used for the design and optimization of a latent heat thermal storage unit.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4949137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4949137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV N.H.S. Tay; N.H.S. Tay; Martin Belusko; Ming Liu; Frank Bruno;Abstract Thermal energy storage systems provide a means to store energy for use in heating and cooling applications at a later time. The storage of thermal energy allows renewable sources of energy to be stored if the time of demand does not coincide with the time of production. It also enables access to off-peak electricity tariffs offered during times of low electricity demand. Storage systems can be charged during the low-cost tariff period and provide heating or cooling later when required. This benefits consumers with lower electricity costs and power generators with demand levelling. Thermal energy storage systems predominantly store heat as sensible heat in a substance. However, during a phase change heat energy can be stored as latent heat. Phase change material (PCM) thermal storage systems can store a greater amount of thermal energy per unit volume than sensible heat storage systems. Historically a drawback of using PCMs as a storage medium has been the low rates of heat transfer. Heat transfer enhancement techniques studied have included the use of additional metallic material and increasing heat transfer surface area such as fins to improve heat transfer rates of the PCM. Although these techniques are effective, they add significant cost and reduce the compactness factor of the thermal energy storage system. Recent research has been conducted on heat transfer enhancement that makes use of moving or transporting the PCM. This method is not only effective for increasing the heat transfer; it is less expensive and maintains a high compactness factor for the thermal energy storage system. This review paper presents the different heat transfer enhancement techniques reported in the literature. It also summarises the research conducted on phase change storage systems where the PCM is moved in the storage system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Frank Bruno; Nasrul Amri Mohd Amin; M.S. Abdul Majid; S. Aziz; Martin Belusko;Abstract This paper presents a numerical investigation of a thermal energy storage tank consisting of phase change material (PCM) encapsulated in a sphere, using the effectiveness-number of transfer unit (e-NTU) method. An experimental validated simulation model was used to validate the e-NTU model. Three configurations of PCM container were investigated; a plain sphere, a sphere with conducting pins, a copper-plated sphere with conducting pins. The results showed that the local effectiveness values were increased by an average of 65% for the employment of 32 embedded pins. The average effectiveness was further improved by almost 256% when using copper plated sphere. A good comparable results from the experimental and simulation work indicates that the e-NTU method is applicable to the formulation of heat transfer in the PCM encapsulated sphere despite the change in geometry. Furthermore, the method of defining thermal resistance was found to be applicable to the modified configurations. The values of p factor (isothermal–parallel path ratio) for the PCM sphere with pinned sphere and copper plated sphere with conducting pins were found to be 0.73 and 0.198, respectively. The results suggested that the heat flow through the pinned sphere predominately followed a parallel path, while through the copper-plated sphere was predominately isothermal.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.08.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.08.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEMercè Segarra; J Gallardo-Gonzalez; Ana Inés Fernández; Camila Barreneche; Ming Liu; Mònica Martínez; N.H.S. Tay; N.H.S. Tay; Frank Bruno;Considerable effort has been devoted to the characterization of thermal properties of the different types of materials that can be used as thermal energy storage (TES) media, but scarce literature exists concerning the materials to manufacture the tanks that can be used to contain these storage media. One of the main concerns when selecting the most suitable material for these tanks is its resistance to corrosion due to molten salts that constitute the TES system. Dynamic gravimetric analysis is a newly proposed method for the study of corrosion on metals, which optimizes the standard procedure described by ASTM G1-03. The new technique avoids the direct handling of samples, so more accurate values can be obtained. In this work, the resistance to corrosion of AISI 316 stainless steel samples in contact with commercial grade molten salts of the Li2CO3-Na2CO3-K2CO3 system, at 600 °C for different exposure times, has been determined by using this new methodology. The results show that the initial corrosion rate is lower at higher amounts of lithium carbonate present in the molten salts mixture.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 311 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Soheila Riahi; Yoann Jovet; Wasim Y. Saman; Martin Belusko; Frank Bruno;Abstract Different options of sensible and latent heat storage systems comprising different types of heat transfer fluids, heat storage media or phase change materials (PCMs) have been compared considering the upstream and downstream requirements of a concentrated solar power cycle. For an optimal system, analysis of both the energy efficiency and exergy recovery of the storage system and the whole cycle of heat to power is necessary. This study provides this analysis, comparing a two-tank sensible storage system to latent heat shell and tube storage system, using an analytical method, e-NTU. For the case of molten salt as the PCM and sCO2 as the heat transfer fluid, results show 4.02% higher exergy recovery for the two-tank system at a working temperature range 450–700 °C compared to 450–660 °C for the latent heat storage system where the upper limit is the PCM melting temperature. Compared to the Carnot cycle efficiency (the highest rate of useful energy (exergy) recovery for an isentropic process) of 70%, the overall efficiency of the two-tank system, the base case of molten salt/sCO2, molten salt/Na, and molten metal/sCO2 are 57.41%, 53.39%, 55.21%, and 53.55%, respectively. The gap in efficiency between the sensible and latent heat storage systems decreases by lowering the thermal resistance of heat transfer fluid side and/or the PCM side. Specifically, the gap in efficiency decreases 45% by using liquid Na instead of sCO2 and a 4% decrease is observed when replacing molten salt with a molten metal like aluminium as the PCM. Using PCMs with higher melting temperature is preferred with liquids with high thermal conductivity like Sodium. For a heat transfer fluid such as sCO2 with low thermal conductivity, a higher inlet fluid temperature and/or a low temperature PCM can provide high exergy efficiency. For a specific combination of PCM and heat transfer fluid, an optimal melting temperature exists depending on the inlet temperatures during charging/discharging and the thermophysical properties of the media. The study shows that PCM storage provides opportunities to minimise causes of irreversibilities to achieve simultaneous high volumetric energy density and high exergy recovery for CSP application in comparison with the conventional two-tank sensible storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.12.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.12.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Martin Belusko; Ming Liu; N.H.S. Tay; Frank Bruno;Abstract The tube-in-tank is a compact configuration well suited for PCM thermal storage systems. However limited research has investigated the impact of the boundary condition applied to the PCM achieved through differing tube arrangements. In Part 1, using CFD and considering the discharging condition for CSP applications, it was determined that when the heat transfer fluid flow was in parallel, poor extraction of latent energy occurs, whereas in a counterflow arrangement maximum latent energy is extracted. In Part 2, the impact of mass flow rate and PCM thermal conductivity on the extraction of latent energy for these tube arrangements was investigated. It was discovered that the counterflow arrangement can experience poorer heat transfer which can be avoided through design. Furthermore, little investigation has considered the impact of the effectiveness of heat transfer with PCM systems with increased amounts of sensible energy, typical for CSP applications. It was determined that for latent dominant storage systems, the counterflow tube arrangement should be applied, while for sensible dominant PCM storage systems, parallel flow should be considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Frank Bruno; David Whaley; Martin Belusko; Timothy O'Leary;The rating of buildings using thermal models represents a contrasting regulatory approach to prescriptive measures to improve the energy efficiency of buildings. This paper investigates the relationship between measured household energy use for thermal comfort purposes and the modelled thermal energy calculated under the Nationwide House Energy Rating Scheme (NatHERS), which is used for the regulation of minimum energy performance standards for new housing in Australia. Two different sets of housing in Adelaide, South Australia which were built a decade apart and to significantly different energy performance standards represent the basis of this study. The results show that better insulated houses represented by higher stars under the NatHERS scheme do use less energy for heating and cooling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Chunrong Zhao; Michael Opolot; Patrick Keane; Ji Wang; Ming Liu; Frank Bruno; Simone Mancin; Kamel Hooman;In this work, melting of a high-temperature inorganic phase change material (PCM) eutectic (with a melting point of 569 °C) within a vertical cylindrical tank has been experimentally investigated. To promote the heat transfer rate, a periodic structure that is constructed by a commercial SS-304 mesh screen has been considered and immersed into the PCM tank. Thermal characteristics of the PCM-periodic structure tank under different initial temperatures (450, 490 and 546 °C) and wall temperatures (620, 640, 660, 680 and 700 °C), are then investigated and reported. The presented experimental data can facilitate practical engineers to find the best operating condition of similar PCM tanks; meanwhile, it can also be employed for the investigation of thermal response of transient heat conduction before melting starts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enss.2023.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enss.2023.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yanting Yin; Raihan Rumman; Benjamin A. Chambers; Ming Liu; Rhys Jacob; Frank Bruno; Martin Belusko; David A. Lewis; Gunther G. Andersson;Abstract Analysis of stainless steel 316 as a containment material in the presence of a phase change material (PCM) cycled at high temperature was carried out through a combination of X-ray photoelectron spectroscopy and X-ray diffraction methods. In this work, stainless steel tokens were half-immersed in a chloride carbonate-based PCM, which were then thermally cycled in an air or a nitrogen environment up to 500 times, allowing the PCM to repeatedly transform between solid and liquid phases. Spectroscopy and diffraction methods were applied on the tokens, as well as the cycled PCM, to investigate the extent and nature of corrosion in such steel alloys. With varying sputtering conditions, the oxidation state at different depths of token surfaces was quantified. From the outermost corroded layer through to the bulk, this study shows a gradual change in distribution in both Cr and oxidation of Fe, while Cr was specifically found to have depleted and migrated into the PCM. The oxidation and depletion have been found to increase with increasing exposure time to PCM while sigma-phase structure embrittled in the corrosion layer.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yanting Yin; Raihan Rumman; Benjamin A. Chambers; Ming Liu; Rhys Jacob; Martin Belusko; Frank Bruno; David A. Lewis; Gunther G. Andersson;Abstract The formation and mechanism that drive corrosion in stainless steel as a containment material in the presence of phase change materials is of importance in solar thermal energy storage systems. In our work, half-immersed stainless steel 316 tokens in a carbonate-based phase change material (PCM 638) have been investigated. The samples were thermally cycled in air and Nitrogen environment up to 500 times within a high-temperature range, allowing the PCM to transform between solid and liquid states repeatedly. As a consequence of thermal cycling, severe thickness loss on steel token was observed, indicating a degree of oxidation occurring, which depleted the uncorroded steel. Cross-sectional microstructural analysis was carried out to determine the elemental distribution and structural morphology along the corrosion layers. This study shows that thermal cycling of SS 316 in PCM results in active Ni and Cr migration to the surface, leading to a significant depletion of Cr from steel moving into the PCM. Cr and Fe on the surface are found to oxidise with varying degrees, with respect to the exposure time. The depletion of Cr was found to be higher in SS 316 immersed in PCM, while also increasing with exposure time.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016Publisher:Author(s) Authors: Soheila Riahi; N. H. S. Tay; Frank Bruno; Wasim Saman;doi: 10.1063/1.4949137
Numerical study of inward and outward melting of a high temperature PCM in cylindrical enclosures were performed, using FLUENT 15. For validation purposes, numerical modeling of inward melting of a low temperature PCM was initially conducted and the predicted results were compared with the experimental data from the literature. The validated model for the low temperature PCM was used for two high temperature cases; inward melting of a high temperature PCM in a cylindrical enclosure and outward melting in a cylindrical case with higher aspect ratio. The results of this study show that the numerical model developed is capable of capturing the details of melting process with buoyancy driven convection for Ra<108, i.e. laminar flow, for a high temperature PCM and can be used for the design and optimization of a latent heat thermal storage unit.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4949137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4949137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV N.H.S. Tay; N.H.S. Tay; Martin Belusko; Ming Liu; Frank Bruno;Abstract Thermal energy storage systems provide a means to store energy for use in heating and cooling applications at a later time. The storage of thermal energy allows renewable sources of energy to be stored if the time of demand does not coincide with the time of production. It also enables access to off-peak electricity tariffs offered during times of low electricity demand. Storage systems can be charged during the low-cost tariff period and provide heating or cooling later when required. This benefits consumers with lower electricity costs and power generators with demand levelling. Thermal energy storage systems predominantly store heat as sensible heat in a substance. However, during a phase change heat energy can be stored as latent heat. Phase change material (PCM) thermal storage systems can store a greater amount of thermal energy per unit volume than sensible heat storage systems. Historically a drawback of using PCMs as a storage medium has been the low rates of heat transfer. Heat transfer enhancement techniques studied have included the use of additional metallic material and increasing heat transfer surface area such as fins to improve heat transfer rates of the PCM. Although these techniques are effective, they add significant cost and reduce the compactness factor of the thermal energy storage system. Recent research has been conducted on heat transfer enhancement that makes use of moving or transporting the PCM. This method is not only effective for increasing the heat transfer; it is less expensive and maintains a high compactness factor for the thermal energy storage system. This review paper presents the different heat transfer enhancement techniques reported in the literature. It also summarises the research conducted on phase change storage systems where the PCM is moved in the storage system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Frank Bruno; Nasrul Amri Mohd Amin; M.S. Abdul Majid; S. Aziz; Martin Belusko;Abstract This paper presents a numerical investigation of a thermal energy storage tank consisting of phase change material (PCM) encapsulated in a sphere, using the effectiveness-number of transfer unit (e-NTU) method. An experimental validated simulation model was used to validate the e-NTU model. Three configurations of PCM container were investigated; a plain sphere, a sphere with conducting pins, a copper-plated sphere with conducting pins. The results showed that the local effectiveness values were increased by an average of 65% for the employment of 32 embedded pins. The average effectiveness was further improved by almost 256% when using copper plated sphere. A good comparable results from the experimental and simulation work indicates that the e-NTU method is applicable to the formulation of heat transfer in the PCM encapsulated sphere despite the change in geometry. Furthermore, the method of defining thermal resistance was found to be applicable to the modified configurations. The values of p factor (isothermal–parallel path ratio) for the PCM sphere with pinned sphere and copper plated sphere with conducting pins were found to be 0.73 and 0.198, respectively. The results suggested that the heat flow through the pinned sphere predominately followed a parallel path, while through the copper-plated sphere was predominately isothermal.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.08.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.08.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEMercè Segarra; J Gallardo-Gonzalez; Ana Inés Fernández; Camila Barreneche; Ming Liu; Mònica Martínez; N.H.S. Tay; N.H.S. Tay; Frank Bruno;Considerable effort has been devoted to the characterization of thermal properties of the different types of materials that can be used as thermal energy storage (TES) media, but scarce literature exists concerning the materials to manufacture the tanks that can be used to contain these storage media. One of the main concerns when selecting the most suitable material for these tanks is its resistance to corrosion due to molten salts that constitute the TES system. Dynamic gravimetric analysis is a newly proposed method for the study of corrosion on metals, which optimizes the standard procedure described by ASTM G1-03. The new technique avoids the direct handling of samples, so more accurate values can be obtained. In this work, the resistance to corrosion of AISI 316 stainless steel samples in contact with commercial grade molten salts of the Li2CO3-Na2CO3-K2CO3 system, at 600 °C for different exposure times, has been determined by using this new methodology. The results show that the initial corrosion rate is lower at higher amounts of lithium carbonate present in the molten salts mixture.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 311 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Soheila Riahi; Yoann Jovet; Wasim Y. Saman; Martin Belusko; Frank Bruno;Abstract Different options of sensible and latent heat storage systems comprising different types of heat transfer fluids, heat storage media or phase change materials (PCMs) have been compared considering the upstream and downstream requirements of a concentrated solar power cycle. For an optimal system, analysis of both the energy efficiency and exergy recovery of the storage system and the whole cycle of heat to power is necessary. This study provides this analysis, comparing a two-tank sensible storage system to latent heat shell and tube storage system, using an analytical method, e-NTU. For the case of molten salt as the PCM and sCO2 as the heat transfer fluid, results show 4.02% higher exergy recovery for the two-tank system at a working temperature range 450–700 °C compared to 450–660 °C for the latent heat storage system where the upper limit is the PCM melting temperature. Compared to the Carnot cycle efficiency (the highest rate of useful energy (exergy) recovery for an isentropic process) of 70%, the overall efficiency of the two-tank system, the base case of molten salt/sCO2, molten salt/Na, and molten metal/sCO2 are 57.41%, 53.39%, 55.21%, and 53.55%, respectively. The gap in efficiency between the sensible and latent heat storage systems decreases by lowering the thermal resistance of heat transfer fluid side and/or the PCM side. Specifically, the gap in efficiency decreases 45% by using liquid Na instead of sCO2 and a 4% decrease is observed when replacing molten salt with a molten metal like aluminium as the PCM. Using PCMs with higher melting temperature is preferred with liquids with high thermal conductivity like Sodium. For a heat transfer fluid such as sCO2 with low thermal conductivity, a higher inlet fluid temperature and/or a low temperature PCM can provide high exergy efficiency. For a specific combination of PCM and heat transfer fluid, an optimal melting temperature exists depending on the inlet temperatures during charging/discharging and the thermophysical properties of the media. The study shows that PCM storage provides opportunities to minimise causes of irreversibilities to achieve simultaneous high volumetric energy density and high exergy recovery for CSP application in comparison with the conventional two-tank sensible storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.12.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.12.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu