- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Rintz, Cam; Koubbi, Philippe; Ramiro‐sánchez, Berta; Azarian, Clara; Caccavo, Jilda; Cotté, Cédric; Goberville, Eric; Godet, Claire; Hulley, Percy; Le Goff, Rémy; Leprieur, Fabien; Robuchon, Marine; Serandour, Baptiste; Leroy, Boris;doi: 10.1111/gcb.70256
ABSTRACTTo predict the spatial responses of biodiversity to climate change, studies typically rely on species‐specific approaches, such as species distribution models. In this study, we propose an alternative methodology that investigates the collective response of species groups by modelling biogeographical regions. Biogeographical regions are areas defined by homogeneous species compositions and separated by barriers to dispersal. When climate acts as such a barrier, species within the same region are expected to respond similar to changing climatic conditions, enabling the prediction of entire region shifts in response to future climate scenarios. We applied this approach to the Southern Ocean, which exhibits sharp climatic transitions known as oceanic fronts, focusing on the mesopelagic lanternfishes (family Myctophidae). We compiled occurrence data for 115 lanternfish species from 1950 onwards and employed a network‐based analysis to identify two major biogeographical regions: a southern and a subtropical region. These regions were found to be distinct, with minimal overlap in species distributions along the temperature gradient and a separation around 8°C, indicating that temperature likely acts as a climatic barrier. Using an ensemble modelling approach, we projected the response of these regions to future temperature changes under various climate scenarios. Our results suggest a circumpolar expansion of the subtropical region and a contraction of the southern region, with the Southern Ocean becoming a cul‐de‐sac for southern species. Ultimately, our results suggest that when support is found for the climatic barrier hypothesis, community‐level models from a ‘group first, then predict’ strategy may effectively predict future shifts in species assemblages.
Global Change Biolog... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2025Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 1 citations 1 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2025Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Funded by:EC | ACTNOWEC| ACTNOWSerandour, Baptiste; Leroy, Boris; Blenckner, Thorsten; Mittermayer, Felix; Clemmesen, Catriona; Cruz, Joana; Nowaczyk, Antoine; Winder, Monika;handle: 10400.1/27040
Abstract The ecological role, bloom extent and long-term dynamics of jellyfishes are mostly overlooked due to sampling limitations, leading to the lack of continuous long-term datasets. A rise in frequency and magnitude of jellyfish invasion around the world is shedding new light on these organisms. In this study, we estimate the current and future distribution of the introduced jellyfish Blackfordia virginica in the Baltic Sea. We determine the combination of favorable levels of temperature and salinity for this species by analyzing presence/absence data from areas outside the Baltic Sea and project the distribution of suitable habitat in the Baltic Sea across different scenarios with variable climate forcing and eutrophication levels. Our results show that suitability increases with rising temperature and optimal salinity range from 13 to 20 for this species. In addition, a relatively large area of the Baltic Sea represents favorable abiotic conditions for B. virginica, enhancing the concerns on its potential range expansion. Spatial analysis illustrates that the coastal areas of the southern Baltic Sea are particularly at risk for the invasion of the species. The observation of the projection of habitat suitability across time highlights that future Baltic Sea environmental conditions increase suitability levels for B. virginica and suggest a potential expansion of its distribution in the future.
Sapientia Repositóri... arrow_drop_down Sapientia Repositório da Universidade do AlgarveArticle . 2025License: CC BYData sources: Sapientia Repositório da Universidade do Algarveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sapientia Repositóri... arrow_drop_down Sapientia Repositório da Universidade do AlgarveArticle . 2025License: CC BYData sources: Sapientia Repositório da Universidade do Algarveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Rintz, Cam; Koubbi, Philippe; Ramiro‐sánchez, Berta; Azarian, Clara; Caccavo, Jilda; Cotté, Cédric; Goberville, Eric; Godet, Claire; Hulley, Percy; Le Goff, Rémy; Leprieur, Fabien; Robuchon, Marine; Serandour, Baptiste; Leroy, Boris;doi: 10.1111/gcb.70256
ABSTRACTTo predict the spatial responses of biodiversity to climate change, studies typically rely on species‐specific approaches, such as species distribution models. In this study, we propose an alternative methodology that investigates the collective response of species groups by modelling biogeographical regions. Biogeographical regions are areas defined by homogeneous species compositions and separated by barriers to dispersal. When climate acts as such a barrier, species within the same region are expected to respond similar to changing climatic conditions, enabling the prediction of entire region shifts in response to future climate scenarios. We applied this approach to the Southern Ocean, which exhibits sharp climatic transitions known as oceanic fronts, focusing on the mesopelagic lanternfishes (family Myctophidae). We compiled occurrence data for 115 lanternfish species from 1950 onwards and employed a network‐based analysis to identify two major biogeographical regions: a southern and a subtropical region. These regions were found to be distinct, with minimal overlap in species distributions along the temperature gradient and a separation around 8°C, indicating that temperature likely acts as a climatic barrier. Using an ensemble modelling approach, we projected the response of these regions to future temperature changes under various climate scenarios. Our results suggest a circumpolar expansion of the subtropical region and a contraction of the southern region, with the Southern Ocean becoming a cul‐de‐sac for southern species. Ultimately, our results suggest that when support is found for the climatic barrier hypothesis, community‐level models from a ‘group first, then predict’ strategy may effectively predict future shifts in species assemblages.
Global Change Biolog... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2025Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 1 citations 1 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2025Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Funded by:EC | ACTNOWEC| ACTNOWSerandour, Baptiste; Leroy, Boris; Blenckner, Thorsten; Mittermayer, Felix; Clemmesen, Catriona; Cruz, Joana; Nowaczyk, Antoine; Winder, Monika;handle: 10400.1/27040
Abstract The ecological role, bloom extent and long-term dynamics of jellyfishes are mostly overlooked due to sampling limitations, leading to the lack of continuous long-term datasets. A rise in frequency and magnitude of jellyfish invasion around the world is shedding new light on these organisms. In this study, we estimate the current and future distribution of the introduced jellyfish Blackfordia virginica in the Baltic Sea. We determine the combination of favorable levels of temperature and salinity for this species by analyzing presence/absence data from areas outside the Baltic Sea and project the distribution of suitable habitat in the Baltic Sea across different scenarios with variable climate forcing and eutrophication levels. Our results show that suitability increases with rising temperature and optimal salinity range from 13 to 20 for this species. In addition, a relatively large area of the Baltic Sea represents favorable abiotic conditions for B. virginica, enhancing the concerns on its potential range expansion. Spatial analysis illustrates that the coastal areas of the southern Baltic Sea are particularly at risk for the invasion of the species. The observation of the projection of habitat suitability across time highlights that future Baltic Sea environmental conditions increase suitability levels for B. virginica and suggest a potential expansion of its distribution in the future.
Sapientia Repositóri... arrow_drop_down Sapientia Repositório da Universidade do AlgarveArticle . 2025License: CC BYData sources: Sapientia Repositório da Universidade do Algarveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sapientia Repositóri... arrow_drop_down Sapientia Repositório da Universidade do AlgarveArticle . 2025License: CC BYData sources: Sapientia Repositório da Universidade do Algarveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
