- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United KingdomPublisher:Elsevier BV Alexandra Schieweck; Erik Uhde; Tunga Salthammer; Lea C. Salthammer; Lidia Morawska; Mandana Mazaheri; Prashant Kumar;Global climate change, demographic change and advancing mechanization of everyday life will go along with new ways of living. Temperature extremes, an ageing society and higher demands on a comfortable life will lead to the implementation of sensor based networks in order to create acceptable and improved living conditions. Originally, the idea of the smart home served primarily the efficient use of energy and the optimization of ventilation technology connected with new ways of constructing buildings (low-energy and passive houses, respectively). Today the term 'smart home' is also linked with the networking of home automation systems, home appliances and communications and entertainment electronics. Living in a smart home often makes also significant demands on the occupants who are required to drastically change some of their living habits. This review summarizes current findings on the effect of measured environmental parameters on indoor air quality, individual thermal comfort and living behavior in smart homes with focus on central Europe. A critical evaluation of available sensor technologies, their application in homes and data security aspects as well as limits and possibilities of current technologies to control particles and gaseous pollutants indoors is included. The review also considers the acceptance of smart technologies by occupants in terms of living habits, perceived indoor air quality and data security.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2018License: CC BY NC NDFull-Text: http://epubs.surrey.ac.uk/848666/Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.05.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2018License: CC BY NC NDFull-Text: http://epubs.surrey.ac.uk/848666/Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.05.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Managing Air for Green In...UKRI| Managing Air for Green Inner CitiesAuthors: Ahmed, T; Kumar, P; Mottet, L;handle: 10044/1/87314
Abstract In buildings, energy is primarily consumed by mechanical air conditioning systems. Low energy alternatives, such as natural ventilation, are needed. However, they need to be able to cope with increasing heatwaves and pollution, particularly in warm climates. This review paper looked at the ability of natural ventilation to provide adequate thermal comfort, resilience against heatwaves, and good Indoor Air Quality in warm climates. Single-sided ventilation demonstrates the poorest ability to provide thermal comfort, while cross ventilation highlights better performance in terms of reducing indoor air temperatures compared to outdoor. However, windcatchers and solar chimneys displayed even better performance by producing relatively high ventilation rates. During heatwaves and future climatic scenarios, natural ventilation, by cross-ventilation, was not able to meet internal thermal comfort standards. A potential low energy solution could be combining solar chimneys or windcatchers with water evaporation cooling. A critical synthesis of the literature suggests that these systems can generate high ventilation rates and keep indoor temperatures around 8 °C cooler than outdoor temperatures in warm weather (>35 °C). However, no studies were found testing these systems against future climate scenarios, and further studies are recommended. The literature supported natural ventilation being effective in removing pollution generated indoors due to adequate ventilation rates. However, using unfiltered natural ventilation for areas with high outdoor pollution can increase the indoor deposition of harmful particulate matter. With increasing air pollution, further studies are urgently required to investigate filter enabled natural ventilation, particularly with solar chimney/windcatcher incorporated.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87314Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87314Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Alessandro Zivelonghi; Prashant Kumar;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, United StatesPublisher:Elsevier BV Funded by:EC | iSCAPEEC| iSCAPEEisenman, Theodore S.; Churkina, Galina; Jariwala, Sunit P.; Kumar, Prashant; Lovasi, Gina S.; Pataki, Diane E.; Weinberger, Kate R.; Whitlow, Thomas H.;A “call to action” has been issued for scholars in landscape and urban planning, natural science, and public health to conduct interdisciplinary research on the human health effects of spending time in or near greenspaces. This is timely in light of contemporary interest in municipal tree planting and urban greening, defined as organized or semi-organized efforts to introduce, conserve, or maintain outdoor vegetation in urban areas. In response to injunctions from scholars and urban greening trends, this article provides an interdisciplinary review on urban trees, air quality, and asthma. We assess the scientific literature by reviewing refereed review papers and empirical studies on the biophysical processes through which urban trees affect air quality, as well as associated models that extend estimates to asthma outcomes. We then review empirical evidence of observed links between urban trees and asthma, followed by a discussion on implications for urban landscape planning and design. This review finds no scientific consensus that urban trees reduce asthma by improving air quality. In some circumstances, urban trees can degrade air quality and increase asthma. Causal pathways between urban trees, air quality, and asthma are very complex, and there are substantial differences in how natural science and epidemiology approach this issue. This may lead to ambiguity in scholarship, municipal decision-making, and landscape planning. Future research on this topic, as well as on urban ecosystem services and urban greening, should embrace epistemological and etiological pluralism and be conducted through interdisciplinary teamwork.
Landscape and Urban ... arrow_drop_down Landscape and Urban PlanningArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSurrey Research InsightArticle . 2019Full-Text: https://surrey.eprints-hosting.org/850549/1/URBAN%20TREES%2C%20AIR%20QUALITY%2C%20AND%20ASTHMA.pdfData sources: Surrey Research InsightLandscape and Urban PlanningArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.landurbplan.2019.02.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Landscape and Urban ... arrow_drop_down Landscape and Urban PlanningArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSurrey Research InsightArticle . 2019Full-Text: https://surrey.eprints-hosting.org/850549/1/URBAN%20TREES%2C%20AIR%20QUALITY%2C%20AND%20ASTHMA.pdfData sources: Surrey Research InsightLandscape and Urban PlanningArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.landurbplan.2019.02.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Italy, ItalyPublisher:Elsevier BV Funded by:EC | RECONECT, EC | OPERANDUMEC| RECONECT ,EC| OPERANDUMDanilo Montesi; Prashant Kumar; Prashant Kumar; Jeetendra Sahani; Silvana Di Sabatino; Zoran Vojinovic; Flavio Bertini; Sisay Debele; Federico Porcù; Laura S. Leo; Slobodan B. Mickovski; Belen Marti-Cardona;Hydro-meteorological hazards (HMHs) have had a strong impact on human societies and ecosystems. Their impact is projected to be exacerbated by future climate scenarios. HMHs cataloguing is an effective tool to evaluate their associated risks and plan appropriate remediation strategies. However, factors linked to HMHs origin and triggers remain uncertain, which pose a challenge for their cataloguing. Focusing on key HMHs (floods, storm surges, landslides, droughts, and heatwaves), the goal of this review paper is to analyse and present a classification scheme, key features, and elements for designing nature-based solutions (NBS) and mitigating the adverse impacts of HMHs in Europe. For this purpose, we systematically examined the literature on NBS classification and assessed the gaps that hinder the widespread uptake of NBS. Furthermore, we critically evaluated the existing literature to give a better understanding of the HMHs drivers and their interrelationship (causing multi-hazards). Further conceptualisation of classification scheme and categories of NBS shows that relatively few studies have been carried out on utilising the broader concepts of NBS in tackling HMHs and that the classification and effectiveness of each NBS are dependent on the location, architecture, typology, green species and environmental conditions, as well as interrelated non-linear systems. NBS are often more cost-effective than hard engineering approaches used within the existing systems, especially when taking into consideration their potential co-benefits. We also evaluated the sources of available data for HMHs and NBS, highlighted gaps in data, and presented strategies to overcome the current shortcomings for the development of the NBS for HMHs. We highlighted specific gaps and barriers that need to be filled since the uptake and upscaling studies of NBS in HMHs reduction is rare. The fundamental concepts and the key technical features of past studies reviewed here could help practitioners to design and implement NBS in a real-world situation.
Archivio istituziona... arrow_drop_down University of Surrey Open Research repositoryArticle . 2019License: CC BYFull-Text: http://epubs.surrey.ac.uk/852975/Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2019.108799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio istituziona... arrow_drop_down University of Surrey Open Research repositoryArticle . 2019License: CC BYFull-Text: http://epubs.surrey.ac.uk/852975/Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2019.108799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:Sustainable Energy Authority of IrelandSustainable Energy Authority of IrelandAuthors: Brian Considine; John Gallagher; Prashant Kumar; Aonghus McNabola;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4424456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4424456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Francisco Daniel Mota Lima; Pedro José Pérez-Martínez; Maria de Fatima Andrade; Prashant Kumar; +1 AuthorsFrancisco Daniel Mota Lima; Pedro José Pérez-Martínez; Maria de Fatima Andrade; Prashant Kumar; Regina Maura de Miranda;pmid: 31916170
The burning of biomass in pizza ovens can be an important source of air pollution. Fine particulate matter represents one of the most aggressive pollutants to human health, besides the potential to interfere with global radiative balance. A study in real-world condition was performed in three pizzerias in São Paulo city. Two of the pizzerias used eucalyptus timber logs and one used wooden briquettes. The results from the three pizzerias revealed high average concentrations of PM2.5: 6171.2 μg/m3 at the exit of the chimney and 68.2 μg/m3 in indoor areas. The burning of briquette revealed lower concentrations of PM2.5. BC represented approximately 20% and 30% of the PM2.5 mass concentration in indoor and at chimney exhaust, respectively. Among the trace elements, potassium, chlorine and sulphur were the most prevalent in terms of concentration. Scanning electron microscopy (SEM) analysis revealed particles with an individual and spherical morphology, i.e. the conglomeration of spherical particles, flattened particles in the formation of fibres, the overlapping of layers and the clustering of particles with sponge-like qualities. The average emission factors for PM2.5 and BC due to the burning of logs were 0.38 g/kg and 0.23 g/kg, respectively. The total emissions of PM2.5 and BC were 116.73 t/year and 70.65 t/year, respectively, in the burning of timber logs.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Surrey Open Research repositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-07508-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Surrey Open Research repositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-07508-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Prashant Kumar; Jeetendra Sahani; Nidhi Rawat; Sisay Debele; Arvind Tiwari; Ana Paula Mendes Emygdio; K.V. Abhijith; Vina Kukadia; Kathryn Holmes; Sebastian Pfautsch;handle: 1959.7/uws:70771
Providing children with a clear understanding of climate change drivers and their mitigation is crucial for their roles as future earth stewards. To achieve this, it will be necessary to reverse the declining interest in STEM (Science, Technology, Engineering and Mathematics) education in schools in the UK and other countries, as STEM skills will be critical when designing effective mitigation solutions for climate change. The ‘Heat-Cool Initiative’ was co-designed and successfully implemented in five primary/secondary UK schools, as a playful learning tool to unleash student interest in STEM subjects. 103 students from two cohorts (years 5–6 and 7–9) participated in five Heat-Cool activity sessions where they used infrared cameras to explore the issue of urban heat. Their learning was evaluated using a multi-functional quantitative assessment, including pre- and postsession quizzes. Climate change literacy increased by 9.4% in primary school children and by 4.5% in secondary school children. Analyses of >2000 infrared images taken by students, categorised into 13 common themes, revealed age-related differences in children’s cognitive development. At primary school age, images of the ‘self’ dominated; secondary school children engaged more with their physical environment. This novel approach demonstrated the importance of developing tailored technology-enhanced STEM education programmes for different age cohorts, leading to a high capacity for improving learning outcomes regarding climate change. Such programmes, embedded in school curricula nationally and internationally, could become a much-needed positive contribution to reaching the United Nation’s Sustainable Development Goals, especially Goals 4 (Quality Education) and 13 (Climate Action).
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | iSCAPEEC| iSCAPEAuthors: Stephanie Lima Jorge Galvão; Júnia Cristina Ortiz Matos; Yasmin Kaore Lago Kitagawa; Flávio Santos Conterato; +3 AuthorsStephanie Lima Jorge Galvão; Júnia Cristina Ortiz Matos; Yasmin Kaore Lago Kitagawa; Flávio Santos Conterato; Davidson Martins Moreira; Prashant Kumar; Erick Giovani Sperandio Nascimento;The concern about air pollution in urban areas has substantially increased worldwide. One of its main components, particulate matter (PM) with aerodynamic diameter of ≤2.5 µm (PM2.5), can be inhaled and deposited in deeper regions of the respiratory system, causing adverse effects on human health, which are even more harmful to children. In this sense, the use of deterministic and stochastic models has become a key tool for predicting atmospheric behavior and, thus, providing information for decision makers to adopt preventive actions to mitigate air pollution impacts. However, stochastic models present their own strengths and weaknesses. To overcome some of disadvantages of deterministic models, there has been an increasing interest in the use of deep learning, due to its simpler implementation and its success on multiple tasks, including time series and air quality forecasting. Thus, the objective of the present study is to develop and evaluate the use of four different topologies of deep artificial neural networks (DNNs), analyzing the impact of feature augmentation in the prediction of PM2.5 concentrations by using five levels of discrete wavelet transform (DWT). The following types of deep neural networks were trained and tested on data collected from two living lab stations next to high-traffic roads in Guildford, UK: multi-layer perceptron (MLP), long short-term memory (LSTM), one-dimensional convolutional neural network (1D-CNN) and a hybrid neural network composed of LSTM and 1D-CNN. The performance of each model in making predictions up to twenty-four hours ahead was quantitatively assessed through statistical metrics. The results show that wavelets improved the forecasting results and that discrete wavelet transform is a relevant tool to enhance the performance of DNN topologies, with special emphasis on the hybrid topology that achieved the best results among the applied models.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/9/1451/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13091451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/9/1451/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13091451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:UKRI | Multi-scale evaluation of...UKRI| Multi-scale evaluation of advanced technologies for capturing the CO2: chemical looping applied to solid fuels.Authors: Mukherjee, Sanjay; Kumar, Prashant; Yang, Aidong; Fennell, Paul;The Integrated Gasification Combined Cycle coupled with chemical looping combustion (IGCC-CLC) is one of the most promising technologies that allow generation of cleaner energy from coal by capturing carbon dioxide (CO2). It is essential to compare and evaluate the performances of various oxygen carriers (OC), used in the CLC system; these are crucial for the success of IGCC-CLC technology. Research on OCs has hitherto been restricted to small laboratory and pilot scale experiments. It is therefore necessary to examine the performance of OCs in large-scale systems with more extensive analysis. This study compares the performance of five different OCs – copper, cobalt, iron, manganese and nickel oxides – for large-scale (350–400 MW) IGCC-CLC processes through simulation studies. Further, the effect of three different process configurations: (i) water-cooling, (ii) air-cooling and (iii) air-cooling along with air separation unit (ASU) integration of the CLC air reactor, on the power output of IGCC-CLC processes – are also investigated. The simulation results suggest that iron-based OCs, with 34.3% net electrical efficiency and ~100% CO2 capture rate lead to the most efficient process among all the five studied OCs. A net electrical efficiency penalty of 7.1–8.1% points leads to the IGCC-CLC process being more efficient than amine based post-combustion capture technology and equally efficient to the solvent based pre-combustion capture technology. The net electrical efficiency of the IGCC-CLC process increased by 0.6–2.1% with the use of air-cooling and ASU integration, compared with the water- and air-cooling cases. This work successfully demonstrates a correlation between the reaction enthalpies of different OCs and power output, which suggests that the OCs with higher values of reaction enthalpy for oxidation (ΔHr, oxidation) with air-cooling are more valuable for the IGCC-CLC.
CORE arrow_drop_down Sheffield Hallam University Research ArchiveArticle . 2015License: CC BYData sources: CORE (RIOXX-UK Aggregator)Chemical Engineering ScienceArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)University of Surrey Open Research repositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2015.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down Sheffield Hallam University Research ArchiveArticle . 2015License: CC BYData sources: CORE (RIOXX-UK Aggregator)Chemical Engineering ScienceArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)University of Surrey Open Research repositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2015.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United KingdomPublisher:Elsevier BV Alexandra Schieweck; Erik Uhde; Tunga Salthammer; Lea C. Salthammer; Lidia Morawska; Mandana Mazaheri; Prashant Kumar;Global climate change, demographic change and advancing mechanization of everyday life will go along with new ways of living. Temperature extremes, an ageing society and higher demands on a comfortable life will lead to the implementation of sensor based networks in order to create acceptable and improved living conditions. Originally, the idea of the smart home served primarily the efficient use of energy and the optimization of ventilation technology connected with new ways of constructing buildings (low-energy and passive houses, respectively). Today the term 'smart home' is also linked with the networking of home automation systems, home appliances and communications and entertainment electronics. Living in a smart home often makes also significant demands on the occupants who are required to drastically change some of their living habits. This review summarizes current findings on the effect of measured environmental parameters on indoor air quality, individual thermal comfort and living behavior in smart homes with focus on central Europe. A critical evaluation of available sensor technologies, their application in homes and data security aspects as well as limits and possibilities of current technologies to control particles and gaseous pollutants indoors is included. The review also considers the acceptance of smart technologies by occupants in terms of living habits, perceived indoor air quality and data security.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2018License: CC BY NC NDFull-Text: http://epubs.surrey.ac.uk/848666/Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.05.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2018License: CC BY NC NDFull-Text: http://epubs.surrey.ac.uk/848666/Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.05.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Managing Air for Green In...UKRI| Managing Air for Green Inner CitiesAuthors: Ahmed, T; Kumar, P; Mottet, L;handle: 10044/1/87314
Abstract In buildings, energy is primarily consumed by mechanical air conditioning systems. Low energy alternatives, such as natural ventilation, are needed. However, they need to be able to cope with increasing heatwaves and pollution, particularly in warm climates. This review paper looked at the ability of natural ventilation to provide adequate thermal comfort, resilience against heatwaves, and good Indoor Air Quality in warm climates. Single-sided ventilation demonstrates the poorest ability to provide thermal comfort, while cross ventilation highlights better performance in terms of reducing indoor air temperatures compared to outdoor. However, windcatchers and solar chimneys displayed even better performance by producing relatively high ventilation rates. During heatwaves and future climatic scenarios, natural ventilation, by cross-ventilation, was not able to meet internal thermal comfort standards. A potential low energy solution could be combining solar chimneys or windcatchers with water evaporation cooling. A critical synthesis of the literature suggests that these systems can generate high ventilation rates and keep indoor temperatures around 8 °C cooler than outdoor temperatures in warm weather (>35 °C). However, no studies were found testing these systems against future climate scenarios, and further studies are recommended. The literature supported natural ventilation being effective in removing pollution generated indoors due to adequate ventilation rates. However, using unfiltered natural ventilation for areas with high outdoor pollution can increase the indoor deposition of harmful particulate matter. With increasing air pollution, further studies are urgently required to investigate filter enabled natural ventilation, particularly with solar chimney/windcatcher incorporated.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87314Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87314Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Alessandro Zivelonghi; Prashant Kumar;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, United StatesPublisher:Elsevier BV Funded by:EC | iSCAPEEC| iSCAPEEisenman, Theodore S.; Churkina, Galina; Jariwala, Sunit P.; Kumar, Prashant; Lovasi, Gina S.; Pataki, Diane E.; Weinberger, Kate R.; Whitlow, Thomas H.;A “call to action” has been issued for scholars in landscape and urban planning, natural science, and public health to conduct interdisciplinary research on the human health effects of spending time in or near greenspaces. This is timely in light of contemporary interest in municipal tree planting and urban greening, defined as organized or semi-organized efforts to introduce, conserve, or maintain outdoor vegetation in urban areas. In response to injunctions from scholars and urban greening trends, this article provides an interdisciplinary review on urban trees, air quality, and asthma. We assess the scientific literature by reviewing refereed review papers and empirical studies on the biophysical processes through which urban trees affect air quality, as well as associated models that extend estimates to asthma outcomes. We then review empirical evidence of observed links between urban trees and asthma, followed by a discussion on implications for urban landscape planning and design. This review finds no scientific consensus that urban trees reduce asthma by improving air quality. In some circumstances, urban trees can degrade air quality and increase asthma. Causal pathways between urban trees, air quality, and asthma are very complex, and there are substantial differences in how natural science and epidemiology approach this issue. This may lead to ambiguity in scholarship, municipal decision-making, and landscape planning. Future research on this topic, as well as on urban ecosystem services and urban greening, should embrace epistemological and etiological pluralism and be conducted through interdisciplinary teamwork.
Landscape and Urban ... arrow_drop_down Landscape and Urban PlanningArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSurrey Research InsightArticle . 2019Full-Text: https://surrey.eprints-hosting.org/850549/1/URBAN%20TREES%2C%20AIR%20QUALITY%2C%20AND%20ASTHMA.pdfData sources: Surrey Research InsightLandscape and Urban PlanningArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.landurbplan.2019.02.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Landscape and Urban ... arrow_drop_down Landscape and Urban PlanningArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSurrey Research InsightArticle . 2019Full-Text: https://surrey.eprints-hosting.org/850549/1/URBAN%20TREES%2C%20AIR%20QUALITY%2C%20AND%20ASTHMA.pdfData sources: Surrey Research InsightLandscape and Urban PlanningArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.landurbplan.2019.02.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Italy, ItalyPublisher:Elsevier BV Funded by:EC | RECONECT, EC | OPERANDUMEC| RECONECT ,EC| OPERANDUMDanilo Montesi; Prashant Kumar; Prashant Kumar; Jeetendra Sahani; Silvana Di Sabatino; Zoran Vojinovic; Flavio Bertini; Sisay Debele; Federico Porcù; Laura S. Leo; Slobodan B. Mickovski; Belen Marti-Cardona;Hydro-meteorological hazards (HMHs) have had a strong impact on human societies and ecosystems. Their impact is projected to be exacerbated by future climate scenarios. HMHs cataloguing is an effective tool to evaluate their associated risks and plan appropriate remediation strategies. However, factors linked to HMHs origin and triggers remain uncertain, which pose a challenge for their cataloguing. Focusing on key HMHs (floods, storm surges, landslides, droughts, and heatwaves), the goal of this review paper is to analyse and present a classification scheme, key features, and elements for designing nature-based solutions (NBS) and mitigating the adverse impacts of HMHs in Europe. For this purpose, we systematically examined the literature on NBS classification and assessed the gaps that hinder the widespread uptake of NBS. Furthermore, we critically evaluated the existing literature to give a better understanding of the HMHs drivers and their interrelationship (causing multi-hazards). Further conceptualisation of classification scheme and categories of NBS shows that relatively few studies have been carried out on utilising the broader concepts of NBS in tackling HMHs and that the classification and effectiveness of each NBS are dependent on the location, architecture, typology, green species and environmental conditions, as well as interrelated non-linear systems. NBS are often more cost-effective than hard engineering approaches used within the existing systems, especially when taking into consideration their potential co-benefits. We also evaluated the sources of available data for HMHs and NBS, highlighted gaps in data, and presented strategies to overcome the current shortcomings for the development of the NBS for HMHs. We highlighted specific gaps and barriers that need to be filled since the uptake and upscaling studies of NBS in HMHs reduction is rare. The fundamental concepts and the key technical features of past studies reviewed here could help practitioners to design and implement NBS in a real-world situation.
Archivio istituziona... arrow_drop_down University of Surrey Open Research repositoryArticle . 2019License: CC BYFull-Text: http://epubs.surrey.ac.uk/852975/Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2019.108799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio istituziona... arrow_drop_down University of Surrey Open Research repositoryArticle . 2019License: CC BYFull-Text: http://epubs.surrey.ac.uk/852975/Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2019.108799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:Sustainable Energy Authority of IrelandSustainable Energy Authority of IrelandAuthors: Brian Considine; John Gallagher; Prashant Kumar; Aonghus McNabola;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4424456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4424456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Francisco Daniel Mota Lima; Pedro José Pérez-Martínez; Maria de Fatima Andrade; Prashant Kumar; +1 AuthorsFrancisco Daniel Mota Lima; Pedro José Pérez-Martínez; Maria de Fatima Andrade; Prashant Kumar; Regina Maura de Miranda;pmid: 31916170
The burning of biomass in pizza ovens can be an important source of air pollution. Fine particulate matter represents one of the most aggressive pollutants to human health, besides the potential to interfere with global radiative balance. A study in real-world condition was performed in three pizzerias in São Paulo city. Two of the pizzerias used eucalyptus timber logs and one used wooden briquettes. The results from the three pizzerias revealed high average concentrations of PM2.5: 6171.2 μg/m3 at the exit of the chimney and 68.2 μg/m3 in indoor areas. The burning of briquette revealed lower concentrations of PM2.5. BC represented approximately 20% and 30% of the PM2.5 mass concentration in indoor and at chimney exhaust, respectively. Among the trace elements, potassium, chlorine and sulphur were the most prevalent in terms of concentration. Scanning electron microscopy (SEM) analysis revealed particles with an individual and spherical morphology, i.e. the conglomeration of spherical particles, flattened particles in the formation of fibres, the overlapping of layers and the clustering of particles with sponge-like qualities. The average emission factors for PM2.5 and BC due to the burning of logs were 0.38 g/kg and 0.23 g/kg, respectively. The total emissions of PM2.5 and BC were 116.73 t/year and 70.65 t/year, respectively, in the burning of timber logs.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Surrey Open Research repositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-07508-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Surrey Open Research repositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-07508-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Prashant Kumar; Jeetendra Sahani; Nidhi Rawat; Sisay Debele; Arvind Tiwari; Ana Paula Mendes Emygdio; K.V. Abhijith; Vina Kukadia; Kathryn Holmes; Sebastian Pfautsch;handle: 1959.7/uws:70771
Providing children with a clear understanding of climate change drivers and their mitigation is crucial for their roles as future earth stewards. To achieve this, it will be necessary to reverse the declining interest in STEM (Science, Technology, Engineering and Mathematics) education in schools in the UK and other countries, as STEM skills will be critical when designing effective mitigation solutions for climate change. The ‘Heat-Cool Initiative’ was co-designed and successfully implemented in five primary/secondary UK schools, as a playful learning tool to unleash student interest in STEM subjects. 103 students from two cohorts (years 5–6 and 7–9) participated in five Heat-Cool activity sessions where they used infrared cameras to explore the issue of urban heat. Their learning was evaluated using a multi-functional quantitative assessment, including pre- and postsession quizzes. Climate change literacy increased by 9.4% in primary school children and by 4.5% in secondary school children. Analyses of >2000 infrared images taken by students, categorised into 13 common themes, revealed age-related differences in children’s cognitive development. At primary school age, images of the ‘self’ dominated; secondary school children engaged more with their physical environment. This novel approach demonstrated the importance of developing tailored technology-enhanced STEM education programmes for different age cohorts, leading to a high capacity for improving learning outcomes regarding climate change. Such programmes, embedded in school curricula nationally and internationally, could become a much-needed positive contribution to reaching the United Nation’s Sustainable Development Goals, especially Goals 4 (Quality Education) and 13 (Climate Action).
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | iSCAPEEC| iSCAPEAuthors: Stephanie Lima Jorge Galvão; Júnia Cristina Ortiz Matos; Yasmin Kaore Lago Kitagawa; Flávio Santos Conterato; +3 AuthorsStephanie Lima Jorge Galvão; Júnia Cristina Ortiz Matos; Yasmin Kaore Lago Kitagawa; Flávio Santos Conterato; Davidson Martins Moreira; Prashant Kumar; Erick Giovani Sperandio Nascimento;The concern about air pollution in urban areas has substantially increased worldwide. One of its main components, particulate matter (PM) with aerodynamic diameter of ≤2.5 µm (PM2.5), can be inhaled and deposited in deeper regions of the respiratory system, causing adverse effects on human health, which are even more harmful to children. In this sense, the use of deterministic and stochastic models has become a key tool for predicting atmospheric behavior and, thus, providing information for decision makers to adopt preventive actions to mitigate air pollution impacts. However, stochastic models present their own strengths and weaknesses. To overcome some of disadvantages of deterministic models, there has been an increasing interest in the use of deep learning, due to its simpler implementation and its success on multiple tasks, including time series and air quality forecasting. Thus, the objective of the present study is to develop and evaluate the use of four different topologies of deep artificial neural networks (DNNs), analyzing the impact of feature augmentation in the prediction of PM2.5 concentrations by using five levels of discrete wavelet transform (DWT). The following types of deep neural networks were trained and tested on data collected from two living lab stations next to high-traffic roads in Guildford, UK: multi-layer perceptron (MLP), long short-term memory (LSTM), one-dimensional convolutional neural network (1D-CNN) and a hybrid neural network composed of LSTM and 1D-CNN. The performance of each model in making predictions up to twenty-four hours ahead was quantitatively assessed through statistical metrics. The results show that wavelets improved the forecasting results and that discrete wavelet transform is a relevant tool to enhance the performance of DNN topologies, with special emphasis on the hybrid topology that achieved the best results among the applied models.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/9/1451/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13091451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/9/1451/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13091451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:UKRI | Multi-scale evaluation of...UKRI| Multi-scale evaluation of advanced technologies for capturing the CO2: chemical looping applied to solid fuels.Authors: Mukherjee, Sanjay; Kumar, Prashant; Yang, Aidong; Fennell, Paul;The Integrated Gasification Combined Cycle coupled with chemical looping combustion (IGCC-CLC) is one of the most promising technologies that allow generation of cleaner energy from coal by capturing carbon dioxide (CO2). It is essential to compare and evaluate the performances of various oxygen carriers (OC), used in the CLC system; these are crucial for the success of IGCC-CLC technology. Research on OCs has hitherto been restricted to small laboratory and pilot scale experiments. It is therefore necessary to examine the performance of OCs in large-scale systems with more extensive analysis. This study compares the performance of five different OCs – copper, cobalt, iron, manganese and nickel oxides – for large-scale (350–400 MW) IGCC-CLC processes through simulation studies. Further, the effect of three different process configurations: (i) water-cooling, (ii) air-cooling and (iii) air-cooling along with air separation unit (ASU) integration of the CLC air reactor, on the power output of IGCC-CLC processes – are also investigated. The simulation results suggest that iron-based OCs, with 34.3% net electrical efficiency and ~100% CO2 capture rate lead to the most efficient process among all the five studied OCs. A net electrical efficiency penalty of 7.1–8.1% points leads to the IGCC-CLC process being more efficient than amine based post-combustion capture technology and equally efficient to the solvent based pre-combustion capture technology. The net electrical efficiency of the IGCC-CLC process increased by 0.6–2.1% with the use of air-cooling and ASU integration, compared with the water- and air-cooling cases. This work successfully demonstrates a correlation between the reaction enthalpies of different OCs and power output, which suggests that the OCs with higher values of reaction enthalpy for oxidation (ΔHr, oxidation) with air-cooling are more valuable for the IGCC-CLC.
CORE arrow_drop_down Sheffield Hallam University Research ArchiveArticle . 2015License: CC BYData sources: CORE (RIOXX-UK Aggregator)Chemical Engineering ScienceArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)University of Surrey Open Research repositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2015.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down Sheffield Hallam University Research ArchiveArticle . 2015License: CC BYData sources: CORE (RIOXX-UK Aggregator)Chemical Engineering ScienceArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)University of Surrey Open Research repositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2015.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu