- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Italy, Denmark, United KingdomPublisher:Wiley Funded by:EC | IMBALANCE-PEC| IMBALANCE-PMiquel Ferrín; Laura Márquez; Henning Petersen; Sandrine Salmon; Jean‐François Ponge; Miquel Arnedo; Bridget Emmett; Claus Beier; Inger K. Schmidt; Albert Tietema; Paolo de Angelis; Dario Liberati; Edit Kovács‐Láng; György Kröel‐Dulay; Marc Estiarte; Mireia Bartrons; Josep Peñuelas; Guille Peguero;handle: 2067/47442
AbstractThe capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short‐term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long‐term macroecological drivers with local climate manipulations.We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco‐morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community‐level responses.Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short‐term experimental drought with traits related to more euedaphic life‐forms.The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher dispersal capacity that allows them to seek more favourable micro‐habitats after experiencing drier conditions. The observed relative edaphization of the springtail communities after short‐term experimental drought may thus be a transient community response.The disparity between macroecological trends and fast community‐level responses after climate manipulations highlights the need of simultaneously assessing long‐term and short‐term drivers at broad spatial scales to adequately interpret trait–environment relationships and better forecast biodiversity responses to climate change.Read the freePlain Language Summaryfor this article on the Journal blog.
NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United Kingdom, ItalyPublisher:Wiley David B. Roy; Chris D. Evans; Mark O. Hill; Jeanette Whitaker; Lorenzo Marini; Andrew Crowe; Simon M. Smart; Edwin C. Rowe; Mike G. Le Duc; W. Andrew Scott; Bridget A. Emmett; C. Nigel Critchley; Rob H. Marrs;handle: 11577/2491651
Question: Can useful realised niche models be constructed for British plant species using climate, canopy height and mean Ellenberg indices as explanatory variables? Location: Great Britain. Methods: Generalised linear models were constructed using occurrence data covering all major natural and semi-natural vegetation types (n=40 683 quadrat samples). Paired species and soil records were only available for 4% of the training data (n=1033) so modelling was carried out in two stages. First, multiple regression was used to express mean Ellenberg values for moisture, pH and fertility, in terms of direct soil measurements. Next, species presence/absence was modelled using mean indicator scores, cover-weighted canopy height, three climate variables and interactions between these factors, but correcting for the presence of each target species in training plots to avoid circularity. Results: Eight hundred and three higher plants and 327 bryophytes were modelled. Thirteen per cent of the niche models for higher plants were tested against an independent survey dataset not used to build the models. Models performed better when predictions were based only on indices derived from the species composition of each plot rather than measured soil variables. This reflects the high variation in vegetation indices that was not explained by the measured soil variables. Conclusions: The models should be used to estimate expected habitat suitability rather than to predict species presence. Least uncertainty also attaches to their use as risk assessment and monitoring tools on nature reserves because they can be solved using mean environmental indicators calculated from the existing species composition, with or without climate data.
Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1654-1103.2010.01173.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1654-1103.2010.01173.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 United Kingdom, Spain, Denmark, NetherlandsPublisher:Elsevier BV Beier, C.; Emmett, B. A.; Penuelas, J.; Schmidt, I. K.; Tietema, A.; Estiarte, M.; Gunderson, P.; Llorens, L.; Riis-Nielsen, T.; Sowerby, A.; Gorissen, A.;The global climate is predicted to become significantly warmer over the next century. This will affect ecosystem processes and the functioning of semi natural and natural ecosystems in many parts of the world. However, as various ecosystem processes may be affected to a different extent, balances between different ecosystem processes as well as between different ecosystems may shift and lead to major unpredicted changes. In this study four European shrubland ecosystems along a north-south temperature gradient were experimentally warmed by a novel nighttime warming technique. Biogeochemical cycling of both carbon and nitrogen was affected at the colder sites with increased carbon uptake for plant growth as well as increased carbon loss through soil respiration. Carbon uptake by plant growth was more sensitive to warming than expected from the temperature response across the sites while carbon loss through soil respiration reacted to warming in agreement with the overall Q10 and response functions to temperature across the sites. Opposite to carbon, the nitrogen mineralization was relatively insensitive to the temperature increase and was mainly affected by changes in soil moisture. The results suggest that C and N cycles respond asymmetrically to warming, which may lead to progressive nitrogen limitation and thereby acclimation in plant production. This further suggests that in many temperate zones nitrogen deposition has to be accounted for, not only with respect to the impact on water quality through increased nitrogen leaching where N deposition is high, but also in predictions of carbon sequestration in terrestrial ecosystems under future climatic conditions. Finally the results indicate that on the short term the above-ground processes are more sensitive to temperature changes than the below ground processes.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2008Data sources: Universiteit van Amsterdam Digital Academic RepositoryNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2008.10.001&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2008Data sources: Universiteit van Amsterdam Digital Academic RepositoryNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2008.10.001&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Switzerland, Belgium, United KingdomPublisher:Wiley Funded by:SNSF | Germination and early see...SNSF| Germination and early seedling growth of Pinus and Quercus at the forest-steppe ecotone: effects of environmental stress and facilitationBeier, Claus; Beierkuhnlein, Carl; Wohlgemuth, Thomas; Penuelas, Josep; Emmett, Bridget; Körner, Christian; de Boeck, Hans; Christensen, Jens Hesselbjerg; Leuzinger, Sebastian; Janssens, Ivan A.; Hansen, Karin;AbstractClimatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2012.01793.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2012.01793.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:EC | SOILTRECEC| SOILTRECRobinson, D.A.; Hockley, N.; Cooper, D.M.; Emmett, B.A.; Keith, A.M.; Lebron, I.; Reynolds, B.; Tipping, E.; Tye, A.M.; Watts, C.W.; Whalley, W.R.; Black, H.I.J.; Warren, G.P.; Robinson, J.S.;Natural capital and ecosystem service concepts are embodied in the ecosystems approach to sustainable development, which is a framework being consistently adopted by decision making bodies ranging from national governments to the United Nations. In the Millennium Ecosystem Assessment soils are given the vital role of a supporting service, but many of the other soil goods and services remain obscured. In this review we address this using and earth-system approach, highlighting the final goods and services soils produce, in a stock-fund, fund-service model of the pedosphere. We also argue that focusing on final goods and services will be counterproductive in the long run and emphasize that final goods and services are derived from an ecosystem supply chain that relies on ecological infrastructure. We propose that an appropriate ecosystems framework for soils should incorporate soil stocks (natural capital) showing their contribution to stock-flows and emergent fund-services as part of the supply chain. By so doing, an operational ecosystems concept for soils can draw on much more supporting data on soil stocks as demonstrated in a case study with soils data from England and Wales showing stocks, gaps in monitoring and drivers of change. Although the focus of this review is on soils, we believe the earth-system approach and principles of the ecosystem supply chain are widely applicable to the ecosystems approach and bring clarity in terms of where goods and services are derived from.
NERC Open Research A... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.09.008&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.09.008&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, SwitzerlandPublisher:Elsevier BV Mills, Robert; Dewhirst, N.; Sowerby, Alwyn; Emmett, Bridget; Jones, D.L.;Measuring and modelling the efflux of greenhouse gases from soils is crucial for gauging ecosystem responses to climate and land-use change, and potential contributions and feedbacks to gas emissions. Upland soils with high amounts of organic matter can produce large effluxes of CH4 and potentially N2O, and therefore understanding the sensitivity of such fluxes to changes in climate (e.g. temperature) is of importance. Here we consider the role of shallow podzols in the temperature response of CH4 and N2O efflux using a simple laboratory incubation. Such soils have a shallow peat layer overlain by coarse organic matter, and by splitting and incubating these layers across a 1-30 degrees C temperature ramp, we observed a significant negative temperature response for both gases, and a gas-dependent effect on the presence of a between-layer difference. Given these observations, there is a need to consider the temperature sensitivity of near surface layers as distinct, and to recognise the potential for shallow podzols to have a strong source sink transition across temperature ranges. (C) 2013 Elsevier Ltd. All rights reserved.
Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2013.03.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2013.03.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Dario Masante; Harvard Prosser; Laurence Jones; Paul Whitehead; Bridget A. Emmett; Amy Thomas; Christel Prudhomme; Christel Prudhomme; B. Jack Cosby; Shelagh K. Malham; Gianbattista Bussi;Water-borne pathogen contamination from untreated sewage effluent and runoff from farms is a serious threat to the use of river water for drinking and commercial purposes, such as downstream estuarine shellfish industries. In this study, the impact of climate change and land-use change on the presence of faecal indicator bacteria in freshwater was evaluated, through the use of a recently-developed catchment-scale pathogen model. The River Conwy in Wales has been used as a case-study, because of the large presence of livestock in the catchment and the importance of the shellfish harvesting activities in its estuary. The INCA-Pathogens catchment model has been calibrated through the use of a Monte-Carlo-based technique, based on faecal indicator bacteria measurements, and then driven by an ensemble of climate projections obtained from the HadRM3-PPE model (Future Flow Climate) plus four land-use scenarios (current land use, managed ecosystem, abandonment and agricultural intensification). The results show that climate change is not expected to have a very large impact on average river flow, although it might alter its seasonality. The abundance of faecal indicator bacteria is expected to decrease in response to climate change, especially during the summer months, due to reduced precipitation, causing reduced runoff, and increased temperature, which enhances the bacterial die-off processes. Land-use change can also have a potentially large impact on pathogens. The “managed ecosystems” scenario proposed in this study can cause a reduction of 15% in average water faecal indicator bacteria and up to 30% in the 90th percentile of water faecal indicator bacteria, mainly due to the conversion of pasture land into grassland and the expansion of forest land. This study provides an example of how to assess the impacts of human interventions on the landscape, and what may be the extent of their effects, for other catchments where the human use of the natural resources in the uplands can jeopardise the use of natural resources downstream.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2017.08.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2017.08.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 United KingdomPublisher:Wiley Jones, M.L.M.; Wallace, H.L.; Norris, D.; Brittain, S.A.; Haria, S.; Jones, R.E.; Rhind, P.M.; Reynolds, B.R.; Emmett, B.A.;pmid: 15375731
Abstract: A field survey was conducted to detect signals of atmospheric nitrogen (N) in 11 dune systems along a nitrogen deposition gradient in the United Kingdom. In the mobile and semi‐fixed dunes, above‐ground biomass was positively related to N inputs. This increase was largely due to increased height and cover of Ammophila arenaria. In the long term, this increased biomass may lead to increased organic matter accumulation and consequently accelerated soil development. In the fixed dunes, above ground biomass also showed a positive relationship with N inputs as did soil C: N ratio while soil available N was negatively related to N inputs. Plant species richness was negatively related to N inputs. In the dune slacks, while soil and bulk vegetation parameters showed no relationship with N inputs, cover of Carex arenaria and Hypochaeris radicata increased. Site mean Ellenberg N numbers showed no relationship with N deposition either within habitats or across the whole dataset. Neither abundance‐weighting nor inclusion of the Siebel numbers for bryophytes improved the relationship. The survey reveals that the relationships of soil and vegetation with atmospheric N deposition vary between sand dune habitats but, despite this variability, clear correlations with N inputs exist. While this survey cannot establish causality, on the basis of the relationships observed we suggest a critical load range of 10 ‐ 20 kg N ha‐1 yr‐1 for coastal sand dunes in the UK.
NERC Open Research A... arrow_drop_down Plant BiologyArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1055/s-2004-821004&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Plant BiologyArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1055/s-2004-821004&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | INCREASEEC| INCREASEAuthors: Andrew R. Smith; María Teresa Domínguez; María Teresa Domínguez; Sabine Reinsch; +1 AuthorsAndrew R. Smith; María Teresa Domínguez; María Teresa Domínguez; Sabine Reinsch; Bridget A. Emmett;handle: 10261/151395
17 páginas.-- 9 figuras.-- 3 tablas.-- 74 referencias.-- The online version of this article (doi:10.1007/s10021-016-0062-3) contains supplementary material, which is available to authorized users. Understanding the response of soil respiration to climate variability is critical to formulate realistic predictions of future carbon (C) fluxes under different climate change scenarios. There is growing evidence that the influence of long-term climate variability in C fluxes from terrestrial ecosystems is modulated by adjustments in the aboveground–belowground links. Here, we studied the inter-annual variability in soil respiration from a wet shrubland going through successional change in North Wales (UK) during 13 years. We hypothesised that the decline in plant productivity observed over a decade would result in a decrease in the apparent sensitivity of soil respiration to soil temperature, and that rainfall variability would explain a significant fraction of the inter-annual variability in plant productivity, and consequently, in soil respiration, due to excess-water constraining nutrient availability for plants. As hypothesised, there were parallel decreases between plant productivity and annual and summer CO2 emissions over the 13-year period. Soil temperatures did not follow a similar trend, which resulted in a decline in the apparent sensitivity of soil respiration to soil temperature (apparent Q10 values decreased from 9.4 to 2.8). Contrary to our second hypothesis, summer maximum air temperature rather than rainfall was the climate variable with the greatest influence on aboveground biomass and annual cumulative respiration. Since summer air temperature and rainfall were positively associated, the greatest annual respiration values were recorded during years of high rainfall. The results suggest that adjustments in plant productivity might have a critical role in determining the long-term-sensitivity of soil respiration to changing climate conditions. This research was funded by the EU projects CLIMOOR, VULCAN and INCREASE FP7-INFRASTRUCTURE-2008-1 (Grant Agreement No. 227628)—the INCREASE project. M.T.D was supported by two postdoctoral fellowships awarded by the Spanish Government (National Science and Technology Foundation and Juan de la Cierva fellowship). Peer reviewed
NERC Open Research A... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-016-0062-3&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-016-0062-3&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 Denmark, NetherlandsPublisher:Springer Science and Business Media LLC Beier, Claus; Emmett, Bridget; Gundersen, Per; Tietema, Albert; Peñuelas, Josep; Estiarte, Marc; Gordon, Carmen; Gorissen, Antonie; Llorens, Laura; Roda, Ferran; Williams, Dylan;handle: 11245/1.223704
This article describes new approaches for manipulation of temperature and water input in the field. Nighttime warming was created by reflection of infrared radiation. Automatically operated reflective curtains covered the vegetation at night to reduce heat loss to the atmosphere. This approach mimicked the way climate change, caused by increased cloudiness and increased greenhouse gas emissions, alters the heat balance of ecosystems. Drought conditions were created by automatically covering the vegetation with transparent curtains during rain events over a 2–5-month period. The experimental approach has been evaluated at four European sites across a climate gradient. All sites were dominated (more than 50%) by shrubs of the ericaceous family. Within each site, replicated 4-m × 5-m plots were established for control, warming, and drought treatments and the effect on climate variables recorded. Results over a two-year period indicate that the warming treatment was successful in achieving an increase of the minimum temperatures by 0.4–1.2°C in the air and soil. The drought treatment resulted in a soil moisture reduction of 33%–82% at the peak of the drought. The data presented demonstrate that the approach minimizes unintended artifacts with respect to water balance, moisture conditions, and light, while causing a small but significant reduction in wind speed by the curtains. Temperature measurements demonstrated that the edge effects associated with the treatments were small. Our method provides a valuable tool for investigating the effects of climate change in remote locations with minimal artifacts.
Ecosystems arrow_drop_down University of Copenhagen: ResearchArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-004-0178-8&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Ecosystems arrow_drop_down University of Copenhagen: ResearchArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-004-0178-8&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Italy, Denmark, United KingdomPublisher:Wiley Funded by:EC | IMBALANCE-PEC| IMBALANCE-PMiquel Ferrín; Laura Márquez; Henning Petersen; Sandrine Salmon; Jean‐François Ponge; Miquel Arnedo; Bridget Emmett; Claus Beier; Inger K. Schmidt; Albert Tietema; Paolo de Angelis; Dario Liberati; Edit Kovács‐Láng; György Kröel‐Dulay; Marc Estiarte; Mireia Bartrons; Josep Peñuelas; Guille Peguero;handle: 2067/47442
AbstractThe capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short‐term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long‐term macroecological drivers with local climate manipulations.We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco‐morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community‐level responses.Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short‐term experimental drought with traits related to more euedaphic life‐forms.The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher dispersal capacity that allows them to seek more favourable micro‐habitats after experiencing drier conditions. The observed relative edaphization of the springtail communities after short‐term experimental drought may thus be a transient community response.The disparity between macroecological trends and fast community‐level responses after climate manipulations highlights the need of simultaneously assessing long‐term and short‐term drivers at broad spatial scales to adequately interpret trait–environment relationships and better forecast biodiversity responses to climate change.Read the freePlain Language Summaryfor this article on the Journal blog.
NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United Kingdom, ItalyPublisher:Wiley David B. Roy; Chris D. Evans; Mark O. Hill; Jeanette Whitaker; Lorenzo Marini; Andrew Crowe; Simon M. Smart; Edwin C. Rowe; Mike G. Le Duc; W. Andrew Scott; Bridget A. Emmett; C. Nigel Critchley; Rob H. Marrs;handle: 11577/2491651
Question: Can useful realised niche models be constructed for British plant species using climate, canopy height and mean Ellenberg indices as explanatory variables? Location: Great Britain. Methods: Generalised linear models were constructed using occurrence data covering all major natural and semi-natural vegetation types (n=40 683 quadrat samples). Paired species and soil records were only available for 4% of the training data (n=1033) so modelling was carried out in two stages. First, multiple regression was used to express mean Ellenberg values for moisture, pH and fertility, in terms of direct soil measurements. Next, species presence/absence was modelled using mean indicator scores, cover-weighted canopy height, three climate variables and interactions between these factors, but correcting for the presence of each target species in training plots to avoid circularity. Results: Eight hundred and three higher plants and 327 bryophytes were modelled. Thirteen per cent of the niche models for higher plants were tested against an independent survey dataset not used to build the models. Models performed better when predictions were based only on indices derived from the species composition of each plot rather than measured soil variables. This reflects the high variation in vegetation indices that was not explained by the measured soil variables. Conclusions: The models should be used to estimate expected habitat suitability rather than to predict species presence. Least uncertainty also attaches to their use as risk assessment and monitoring tools on nature reserves because they can be solved using mean environmental indicators calculated from the existing species composition, with or without climate data.
Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1654-1103.2010.01173.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1654-1103.2010.01173.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 United Kingdom, Spain, Denmark, NetherlandsPublisher:Elsevier BV Beier, C.; Emmett, B. A.; Penuelas, J.; Schmidt, I. K.; Tietema, A.; Estiarte, M.; Gunderson, P.; Llorens, L.; Riis-Nielsen, T.; Sowerby, A.; Gorissen, A.;The global climate is predicted to become significantly warmer over the next century. This will affect ecosystem processes and the functioning of semi natural and natural ecosystems in many parts of the world. However, as various ecosystem processes may be affected to a different extent, balances between different ecosystem processes as well as between different ecosystems may shift and lead to major unpredicted changes. In this study four European shrubland ecosystems along a north-south temperature gradient were experimentally warmed by a novel nighttime warming technique. Biogeochemical cycling of both carbon and nitrogen was affected at the colder sites with increased carbon uptake for plant growth as well as increased carbon loss through soil respiration. Carbon uptake by plant growth was more sensitive to warming than expected from the temperature response across the sites while carbon loss through soil respiration reacted to warming in agreement with the overall Q10 and response functions to temperature across the sites. Opposite to carbon, the nitrogen mineralization was relatively insensitive to the temperature increase and was mainly affected by changes in soil moisture. The results suggest that C and N cycles respond asymmetrically to warming, which may lead to progressive nitrogen limitation and thereby acclimation in plant production. This further suggests that in many temperate zones nitrogen deposition has to be accounted for, not only with respect to the impact on water quality through increased nitrogen leaching where N deposition is high, but also in predictions of carbon sequestration in terrestrial ecosystems under future climatic conditions. Finally the results indicate that on the short term the above-ground processes are more sensitive to temperature changes than the below ground processes.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2008Data sources: Universiteit van Amsterdam Digital Academic RepositoryNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2008.10.001&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2008Data sources: Universiteit van Amsterdam Digital Academic RepositoryNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2008.10.001&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Switzerland, Belgium, United KingdomPublisher:Wiley Funded by:SNSF | Germination and early see...SNSF| Germination and early seedling growth of Pinus and Quercus at the forest-steppe ecotone: effects of environmental stress and facilitationBeier, Claus; Beierkuhnlein, Carl; Wohlgemuth, Thomas; Penuelas, Josep; Emmett, Bridget; Körner, Christian; de Boeck, Hans; Christensen, Jens Hesselbjerg; Leuzinger, Sebastian; Janssens, Ivan A.; Hansen, Karin;AbstractClimatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2012.01793.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2012.01793.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:EC | SOILTRECEC| SOILTRECRobinson, D.A.; Hockley, N.; Cooper, D.M.; Emmett, B.A.; Keith, A.M.; Lebron, I.; Reynolds, B.; Tipping, E.; Tye, A.M.; Watts, C.W.; Whalley, W.R.; Black, H.I.J.; Warren, G.P.; Robinson, J.S.;Natural capital and ecosystem service concepts are embodied in the ecosystems approach to sustainable development, which is a framework being consistently adopted by decision making bodies ranging from national governments to the United Nations. In the Millennium Ecosystem Assessment soils are given the vital role of a supporting service, but many of the other soil goods and services remain obscured. In this review we address this using and earth-system approach, highlighting the final goods and services soils produce, in a stock-fund, fund-service model of the pedosphere. We also argue that focusing on final goods and services will be counterproductive in the long run and emphasize that final goods and services are derived from an ecosystem supply chain that relies on ecological infrastructure. We propose that an appropriate ecosystems framework for soils should incorporate soil stocks (natural capital) showing their contribution to stock-flows and emergent fund-services as part of the supply chain. By so doing, an operational ecosystems concept for soils can draw on much more supporting data on soil stocks as demonstrated in a case study with soils data from England and Wales showing stocks, gaps in monitoring and drivers of change. Although the focus of this review is on soils, we believe the earth-system approach and principles of the ecosystem supply chain are widely applicable to the ecosystems approach and bring clarity in terms of where goods and services are derived from.
NERC Open Research A... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.09.008&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.09.008&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, SwitzerlandPublisher:Elsevier BV Mills, Robert; Dewhirst, N.; Sowerby, Alwyn; Emmett, Bridget; Jones, D.L.;Measuring and modelling the efflux of greenhouse gases from soils is crucial for gauging ecosystem responses to climate and land-use change, and potential contributions and feedbacks to gas emissions. Upland soils with high amounts of organic matter can produce large effluxes of CH4 and potentially N2O, and therefore understanding the sensitivity of such fluxes to changes in climate (e.g. temperature) is of importance. Here we consider the role of shallow podzols in the temperature response of CH4 and N2O efflux using a simple laboratory incubation. Such soils have a shallow peat layer overlain by coarse organic matter, and by splitting and incubating these layers across a 1-30 degrees C temperature ramp, we observed a significant negative temperature response for both gases, and a gas-dependent effect on the presence of a between-layer difference. Given these observations, there is a need to consider the temperature sensitivity of near surface layers as distinct, and to recognise the potential for shallow podzols to have a strong source sink transition across temperature ranges. (C) 2013 Elsevier Ltd. All rights reserved.
Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2013.03.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2013.03.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Dario Masante; Harvard Prosser; Laurence Jones; Paul Whitehead; Bridget A. Emmett; Amy Thomas; Christel Prudhomme; Christel Prudhomme; B. Jack Cosby; Shelagh K. Malham; Gianbattista Bussi;Water-borne pathogen contamination from untreated sewage effluent and runoff from farms is a serious threat to the use of river water for drinking and commercial purposes, such as downstream estuarine shellfish industries. In this study, the impact of climate change and land-use change on the presence of faecal indicator bacteria in freshwater was evaluated, through the use of a recently-developed catchment-scale pathogen model. The River Conwy in Wales has been used as a case-study, because of the large presence of livestock in the catchment and the importance of the shellfish harvesting activities in its estuary. The INCA-Pathogens catchment model has been calibrated through the use of a Monte-Carlo-based technique, based on faecal indicator bacteria measurements, and then driven by an ensemble of climate projections obtained from the HadRM3-PPE model (Future Flow Climate) plus four land-use scenarios (current land use, managed ecosystem, abandonment and agricultural intensification). The results show that climate change is not expected to have a very large impact on average river flow, although it might alter its seasonality. The abundance of faecal indicator bacteria is expected to decrease in response to climate change, especially during the summer months, due to reduced precipitation, causing reduced runoff, and increased temperature, which enhances the bacterial die-off processes. Land-use change can also have a potentially large impact on pathogens. The “managed ecosystems” scenario proposed in this study can cause a reduction of 15% in average water faecal indicator bacteria and up to 30% in the 90th percentile of water faecal indicator bacteria, mainly due to the conversion of pasture land into grassland and the expansion of forest land. This study provides an example of how to assess the impacts of human interventions on the landscape, and what may be the extent of their effects, for other catchments where the human use of the natural resources in the uplands can jeopardise the use of natural resources downstream.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2017.08.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2017.08.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 United KingdomPublisher:Wiley Jones, M.L.M.; Wallace, H.L.; Norris, D.; Brittain, S.A.; Haria, S.; Jones, R.E.; Rhind, P.M.; Reynolds, B.R.; Emmett, B.A.;pmid: 15375731
Abstract: A field survey was conducted to detect signals of atmospheric nitrogen (N) in 11 dune systems along a nitrogen deposition gradient in the United Kingdom. In the mobile and semi‐fixed dunes, above‐ground biomass was positively related to N inputs. This increase was largely due to increased height and cover of Ammophila arenaria. In the long term, this increased biomass may lead to increased organic matter accumulation and consequently accelerated soil development. In the fixed dunes, above ground biomass also showed a positive relationship with N inputs as did soil C: N ratio while soil available N was negatively related to N inputs. Plant species richness was negatively related to N inputs. In the dune slacks, while soil and bulk vegetation parameters showed no relationship with N inputs, cover of Carex arenaria and Hypochaeris radicata increased. Site mean Ellenberg N numbers showed no relationship with N deposition either within habitats or across the whole dataset. Neither abundance‐weighting nor inclusion of the Siebel numbers for bryophytes improved the relationship. The survey reveals that the relationships of soil and vegetation with atmospheric N deposition vary between sand dune habitats but, despite this variability, clear correlations with N inputs exist. While this survey cannot establish causality, on the basis of the relationships observed we suggest a critical load range of 10 ‐ 20 kg N ha‐1 yr‐1 for coastal sand dunes in the UK.
NERC Open Research A... arrow_drop_down Plant BiologyArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1055/s-2004-821004&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Plant BiologyArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1055/s-2004-821004&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | INCREASEEC| INCREASEAuthors: Andrew R. Smith; María Teresa Domínguez; María Teresa Domínguez; Sabine Reinsch; +1 AuthorsAndrew R. Smith; María Teresa Domínguez; María Teresa Domínguez; Sabine Reinsch; Bridget A. Emmett;handle: 10261/151395
17 páginas.-- 9 figuras.-- 3 tablas.-- 74 referencias.-- The online version of this article (doi:10.1007/s10021-016-0062-3) contains supplementary material, which is available to authorized users. Understanding the response of soil respiration to climate variability is critical to formulate realistic predictions of future carbon (C) fluxes under different climate change scenarios. There is growing evidence that the influence of long-term climate variability in C fluxes from terrestrial ecosystems is modulated by adjustments in the aboveground–belowground links. Here, we studied the inter-annual variability in soil respiration from a wet shrubland going through successional change in North Wales (UK) during 13 years. We hypothesised that the decline in plant productivity observed over a decade would result in a decrease in the apparent sensitivity of soil respiration to soil temperature, and that rainfall variability would explain a significant fraction of the inter-annual variability in plant productivity, and consequently, in soil respiration, due to excess-water constraining nutrient availability for plants. As hypothesised, there were parallel decreases between plant productivity and annual and summer CO2 emissions over the 13-year period. Soil temperatures did not follow a similar trend, which resulted in a decline in the apparent sensitivity of soil respiration to soil temperature (apparent Q10 values decreased from 9.4 to 2.8). Contrary to our second hypothesis, summer maximum air temperature rather than rainfall was the climate variable with the greatest influence on aboveground biomass and annual cumulative respiration. Since summer air temperature and rainfall were positively associated, the greatest annual respiration values were recorded during years of high rainfall. The results suggest that adjustments in plant productivity might have a critical role in determining the long-term-sensitivity of soil respiration to changing climate conditions. This research was funded by the EU projects CLIMOOR, VULCAN and INCREASE FP7-INFRASTRUCTURE-2008-1 (Grant Agreement No. 227628)—the INCREASE project. M.T.D was supported by two postdoctoral fellowships awarded by the Spanish Government (National Science and Technology Foundation and Juan de la Cierva fellowship). Peer reviewed
NERC Open Research A... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-016-0062-3&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-016-0062-3&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 Denmark, NetherlandsPublisher:Springer Science and Business Media LLC Beier, Claus; Emmett, Bridget; Gundersen, Per; Tietema, Albert; Peñuelas, Josep; Estiarte, Marc; Gordon, Carmen; Gorissen, Antonie; Llorens, Laura; Roda, Ferran; Williams, Dylan;handle: 11245/1.223704
This article describes new approaches for manipulation of temperature and water input in the field. Nighttime warming was created by reflection of infrared radiation. Automatically operated reflective curtains covered the vegetation at night to reduce heat loss to the atmosphere. This approach mimicked the way climate change, caused by increased cloudiness and increased greenhouse gas emissions, alters the heat balance of ecosystems. Drought conditions were created by automatically covering the vegetation with transparent curtains during rain events over a 2–5-month period. The experimental approach has been evaluated at four European sites across a climate gradient. All sites were dominated (more than 50%) by shrubs of the ericaceous family. Within each site, replicated 4-m × 5-m plots were established for control, warming, and drought treatments and the effect on climate variables recorded. Results over a two-year period indicate that the warming treatment was successful in achieving an increase of the minimum temperatures by 0.4–1.2°C in the air and soil. The drought treatment resulted in a soil moisture reduction of 33%–82% at the peak of the drought. The data presented demonstrate that the approach minimizes unintended artifacts with respect to water balance, moisture conditions, and light, while causing a small but significant reduction in wind speed by the curtains. Temperature measurements demonstrated that the edge effects associated with the treatments were small. Our method provides a valuable tool for investigating the effects of climate change in remote locations with minimal artifacts.
Ecosystems arrow_drop_down University of Copenhagen: ResearchArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-004-0178-8&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Ecosystems arrow_drop_down University of Copenhagen: ResearchArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-004-0178-8&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
