- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Public Library of Science (PLoS) Funded by:EC | HISTFUNCEC| HISTFUNCAuthors: Sandra Ravnsbæk Holm; Jens-Christian Svenning;Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000-10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion.
PLoS ONE arrow_drop_down http://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0094021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert PLoS ONE arrow_drop_down http://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0094021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ...NSF| Collaborative Research: Mechanisms of tree population collapses in eastern North America: Disentangling causes of abrupt ecological change during the HoloceneAuthors: John W. Williams; Alejandro Ordonez; Jens-Christian Svenning;pmid: 33288870
During the Anthropocene and other eras of rapidly changing climates, rates of change of ecological systems can be described as fast, slow or abrupt. Fast ecological responses closely track climate change, slow responses substantively lag climate forcing, causing disequilibria and reduced fitness, and abrupt responses are characterized by nonlinear, threshold-type responses at rates that are large relative to background variability and forcing. All three kinds of climate-driven ecological dynamics are well documented in contemporary studies, palaeoecology and invasion biology. This fast-slow-abrupt conceptual framework helps unify a bifurcated climate-change literature, which tends to separately consider the ecological risks posed by slow or abrupt ecological dynamics. Given the prospect of ongoing climate change for the next several decades to centuries of the Anthropocene and wide variations in ecological rates of change, the theory and practice of managing ecological systems should shift attention from target states to target rates. A rates-focused framework broadens the strategic menu for managers to include options to both slow and accelerate ecological rates of change, seeks to reduce mismatch among climate and ecological rates of change, and provides a unified conceptual framework for tackling the distinct risks associated with fast, slow and abrupt ecological rates of change.
Theses@asb arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-01344-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Theses@asb arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-01344-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, France, New Zealand, Netherlands, Netherlands, Netherlands, New Zealand, France, Netherlands, United Kingdom, France, United States, France, Netherlands, Netherlands, Netherlands, Belgium, Spain, Denmark, NetherlandsPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | German Centre for Integra..., NSERCDFG| German Centre for Integrative Biodiversity Research - iDiv ,NSERCXu, Wu-Bing; Guo, Wen-Yong; Serra-Diaz, Josep; Schrodt, Franziska; Eiserhardt, Wolf; Enquist, Brian; Maitner, Brian; Merow, Cory; Violle, Cyrille; Anand, Madhur; Belluau, Michaël; Bruun, Hans Henrik; Byun, Chaeho; Catford, Jane; Cerabolini, Bruno E. L.; Chacón-Madrigal, Eduardo; Ciccarelli, Daniela; Cornelissen, J. Hans C.; Dang-Le, Anh Tuan; de Frutos, Angel; Dias, Arildo; Giroldo, Aelton; Gutiérrez, Alvaro; Hattingh, Wesley; He, Tianhua; Hietz, Peter; Hough-Snee, Nate; Jansen, Steven; Kattge, Jens; Komac, Benjamin; Kraft, Nathan J. B.; Kramer, Koen; Lavorel, Sandra; Lusk, Christopher; Martin, Adam; Ma, Ke-Ping; Mencuccini, Maurizio; Michaletz, Sean; Minden, Vanessa; Mori, Akira; Niinemets, Ülo; Onoda, Yusuke; Onstein, Renske; Peñuelas, Josep; Pillar, Valério; Pisek, Jan; Pound, Matthew; Robroek, Bjorn J. M.; Schamp, Brandon; Slot, Martijn; Sun, Miao; Sosinski, Ênio; Soudzilovskaia, Nadejda; Thiffault, Nelson; van Bodegom, Peter; van der Plas, Fons; Zheng, Jingming; Svenning, Jens-Christian; Ordonez, Alejandro;pmid: 37018407
pmc: PMC10075971
As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0346x249Data sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScience AdvancesArticle . 2023Diposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemLeiden University Scholarly Publications RepositoryArticle . 2023License: CC BYData sources: Leiden University Scholarly Publications RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0346x249Data sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScience AdvancesArticle . 2023Diposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemLeiden University Scholarly Publications RepositoryArticle . 2023License: CC BYData sources: Leiden University Scholarly Publications RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Wheeler, H.C.; Høye, Toke Thomas; Schmidt, Niels Martin; Svenning, J.-C.; Forchhammer, Mads C.;doi: 10.1890/14-0338.1
pmid: 26236873
Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long‐term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre‐flowering exposure to freezing temperatures and to the temperatures experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results indicate that shifting the timing of flowering affects the temperature experienced during flower development and flowering beyond that imposed by interannual variations in climate. We also found that phenological timing may affect flower abundance, and hence, fitness. These findings suggest that plant population responses to future climate change will be shaped not only by extrinsic climate forcing, but also by species' phenological responses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-0338.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-0338.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ArgentinaPublisher:Elsevier BV Jens-Christian Svenning; Zheng Niu; Julia Carolina Mata; Li Wang; Renata Nicora Chequín; Roberto Manuel Salas; Javier Elias Florentín; Wang Li; Wang Li; Robert Buitenwerf;handle: 11336/138260
Land-surface greening has been reported globally over the past decades. While often seen to represent ecosystem recovery, the impacts on biodiversity and society can also be negative. Greening has been widely reported from rangelands, where drivers and processes are complex due to its high environmental heterogeneity and societal dynamics. Here, we assess the complexity behind greening and assess its links to various drivers in an iconic, heterogeneous rangeland area, the Iberá Wetlands and surroundings, in Argentina. Time-series satellite imagery over the past 19 years showed overall net greening, but also substantial local browning both in protected and unprotected areas, linking to land use, temporal changes in surface water, fire, and weather. We found substantial woody expansion mainly in the unprotected land, with 37% contributed by tree plantations and the remaining 63% by spontaneous woody expansion, along with widespread transitions from terrestrial land to seasonal surface water. Fire occurrences tended to reduce greening with unprotected areas experiencing widespread and frequent fire. However, protected areas had more browning in unburnt areas than burned areas. Temporal variation in annual precipitation and temperature tended to nonlinearly influence fire occurrences with an interplay of human fire management, further shaping the vegetation greening, pointing to high complexity behind the observed rangeland greening involving interactions among local drivers. Our findings highlight that the observed overall greening is an outcome of multiple trends with clear negative impacts on biodiversity and the local livestock-oriented culture (notably expanding tree plantations) and spontaneous vegetation dynamics, partly involving spontaneous woody expansion. The latter has positive potential for biodiversity and ecosystem services in terms of woodland recovery, but can become negative in such a natural savanna region if expansions develop on a too broad scale, highlighting the importance of ensuring recovery of natural fire and herbivory regimes in protected areas along with sustainable rangeland management elsewhere.
Geography and Sustai... arrow_drop_down Geography and SustainabilityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Geography and Sustai... arrow_drop_down Geography and SustainabilityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Wiley Authors: Santiago José Elías Velazco; Jean‐Christian Svenning; Bruno R. Ribeiro; Livia Maira Orlandi Laureto;doi: 10.1111/ddi.13215
handle: 11336/132480
AbstractAimPalms are an ecologically and societally important plant group, with high diversity in the Neotropics. Here, we estimated the impacts of future climate change on phylogenetic diversity (PD) of Neotropical palms under varying climatic and dispersal scenarios, assessed the effectiveness of the established network of protected areas (PAs) for conserving palms PD today and in 2070, and identified priority areas for the conservation of palm species and their evolutionary history in the face of climate change.LocationNeotropics.MethodsWe used ecological niche modelling to estimate the distribution of 367 species in the present and for 2070 based on two greenhouse gas emission and two dispersal scenarios. We calculated Faith's PD within each five arc‐minute grid cell to evaluate the effectiveness of PAs relative to null models and used phylogenetic spatial prioritisation analysis to detect priority areas.ResultsWe found that even under the most optimistic climatic and dispersal scenarios, the established network of PAs performed poorly in safeguarding palms PD under both current conditions and those projected for 2070. Significant losses in PD inside PAs are expected under future climate conditions, especially if species are unable to disperse to suitable areas. Nevertheless, a modest and strategic increase in the number of PAs could considerably improve the protection of palms PD in the present and 2070.Main conclusionsThe PD of Neotropical palms is poorly represented within the established network of PAs, at both present and in 2070. A higher realised dispersal rates would diminish PD losses inside the network of PAs. The conservation of palm PD can be improved through the expansion of PAs in strategic regions such as the upper portion of the Amazon Basin, Tropical Andes and Mesoamerica.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | Collaborative Research: D..., NSF | PSCIC Full Proposal: The ..., NSF | NCEAS: National Center fo... +2 projectsNSF| Collaborative Research: Developing integrated trait-based scaling theory to predict community change and forest function in light of global change ,NSF| PSCIC Full Proposal: The iPlant Collaborative: A Cyberinfrastructure-Centered Community for a New Plant Biology ,NSF| NCEAS: National Center for Ecological Analysis and Synthesis ,NSF| Collaborative Research: Experimental Macroecology: Effects of Temperature on Biodiversity ,EC| LUCCASusan K. Wiser; Brian J. Enquist; Brian J. Enquist; Jens-Christian Svenning; Danilo M. Neves; Brody Sandel; Cory Merow; Susy Echeverría-Londoño; Andrew J. Kerkhoff; Robert K. Peet; Naia Morueta-Holme;Significance We explore an extended view of the tropical conservatism hypothesis to account for two often-neglected components of climatic stress: drought and the combined effect of seasonal cold and drought—the latter being a common feature of extratropical dry environments. We show that evolutionary diversity of angiosperm assemblages in extratropical dry biomes is even lower than in biomes subject to only one type of climatic stress. We further show that evolutionary diversity in many assemblages from eastern North America is higher or comparable to that of tropical moist forests, suggesting that some extratropical moist biomes have accumulated angiosperm lineages over deep evolutionary timescales with their flora assembled from lineages that represent the entirety of the angiosperm tree of life.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2021132118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2021132118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Contribution for newspaper or weekly magazine 2009 DenmarkPublisher:IOP Publishing Authors: Basse, Ellen Margrethe; Svenning, Jens-Christian; Olesen, Jørgen E; Besenbacher, Flemming; +3 AuthorsBasse, Ellen Margrethe; Svenning, Jens-Christian; Olesen, Jørgen E; Besenbacher, Flemming; Læssøe, Jeppe; Seidenkrantz, Marit-Solveig; Lange, Lene;More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5–7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2009 . Peer-reviewedData sources: CrossrefAalborg University Research PortalConference object . 2009Data sources: Aalborg University Research PortalPURE Aarhus UniversityContribution for newspaper or weekly magazine . 2009Data sources: PURE Aarhus Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/8/1/011002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2009 . Peer-reviewedData sources: CrossrefAalborg University Research PortalConference object . 2009Data sources: Aalborg University Research PortalPURE Aarhus UniversityContribution for newspaper or weekly magazine . 2009Data sources: PURE Aarhus Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/8/1/011002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 01 Jan 2023 France, Germany, United Kingdom, Italy, United States, Italy, Italy, France, United Kingdom, Italy, Italy, Austria, Germany, United Kingdom, United Kingdom, Czech Republic, Switzerland, Russian Federation, Russian Federation, Italy, Belgium, Denmark, Germany, Czech Republic, Germany, Netherlands, Italy, United Kingdom, Denmark, Switzerland, Italy, Italy, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Doctoral Dissertation Res..., UKRI | BIOmes of Brasil - Resili..., EC | T-FORCES +3 projectsNSF| Doctoral Dissertation Research: Effects of a Dispersal Barrier on Cultural Similarity in Wild Orangutans (Pongo pygmaeus wurmbii) ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| Tropical forests responses to a changing climate: a quest at the interface between trait-based ecology, forest dynamics and remote sensing ,EC| FUNDIVEUROPE ,SNSF| The functional biogeography of the global forest systemMa, Haozhi; Crowther, Thomas W.; Crowther, Thomas W.; Mo, Lidong; Maynard, Daniel S.; Renner, Susanne S.; Van Den Hoogen, Johan; Zou, Yibiao; Liang, Jingjing; De-Miguel, Sergio; Nabuurs, Gert-Jan; Reich, Peter B.; Niinemets, Ülo; Abegg, Meinrad; Adou Yao, Yves C.; Alberti, Giorgio; Almeyda Zambrano, Angelica M.; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana F.; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo A.; Baker, Timothy R.; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely G.; Bastian, Meredith L.; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro H. S.; Brandl, Susanne; Brearley, Francis Q.; Brienen, Roel; Broadbent, Eben N.; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo G.; Cesljar, Goran; Chazdon, Robin; Chen, Han Y. H.; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel D.; Coomes, David A.; Valverde, Fernando Cornejo; Corral-Rivas, José J.; Crim, Philip M.; Cumming, Jonathan R.; Dayanandan, Selvadurai; De Gasper, André L.; Decuyper, Mathieu; Derroire, Géraldine; DeVries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian J.; Eyre, Teresa J.; Fandohan, Adandé Belarmain; Fayle, Tom M.; Feldpausch, Ted R.; Ferreira, Leandro V.; Finér, Leena; Fischer, Markus; Fletcher, Christine; Fridman, Jonas; Frizzera, Lorenzo; Gamarra, Javier G. P.; Gianelle, Damiano; Glick, Henry B.; Harris, David J.; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John L.; Herold, Martin; Hillers, Annika; Honorio Coronado, Eurídice N.; Hui, Cang; Ibanez, Thomas T.; Amaral, Iêda; Imai, Nobuo; Jagodziński, Andrzej M.; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos A.; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah K.; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Khan, Mohammed Latif; Killeen, Timothy J.; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lewis, Simon L.; Lu, Huicui; Lukina, Natalia V.; Maitner, Brian S.; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew R.; Martin, Emanuel H.; Meave, Jorge A.; Melo-Cruz, Omar; Mendoza, Casimiro; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa S.; Mukul, Sharif A.; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor J.; Nevenic, Radovan V.; Ngugi, Michael R.; Niklaus, Pascal A.; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena I.; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo L.; Pfautsch, Sebastian; Phillips, Oliver L.; Picard, Nicolas; Piedade, Maria Teresa F.; Piotto, Daniel; Pitman, Nigel C. A.; Mendoza-Polo, Irina; Poulsen, Axel D.; Poulsen, John R.; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir G.; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric B.; Seben, Vladimír; Serra-Diaz, Josep M.; Sheil, Douglas; Shvidenko, Anatoly Z.; Silva-Espejo, Javier E.; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre F.; Miścicki, Stanislaw; Stereńczak, Krzysztof J.; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben;doi: 10.1038/s41477-023-01543-5 , 10.3929/ethz-b-000643725 , 10.60692/0g11z-dp323 , 10.5445/ir/1000163924 , 10.60692/d6bsp-27w45 , 10.48350/187399
pmid: 37872262
pmc: PMC10654052
AbstractUnderstanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYOpen Research ExeterArticle . 2023License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/37872262Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04288936Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254372Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/6xp502bdData sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82715Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-023-01543-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYOpen Research ExeterArticle . 2023License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/37872262Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04288936Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254372Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/6xp502bdData sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82715Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-023-01543-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2024 FranceKemppinen, Julia; Lembrechts, Jonas; van Meerbeek, Koenraad; Carnicer, Jofre; Chardon, Nathalie Isabelle; Kardol, Paul; Lenoir, Jonathan; Liu, Daijun; Maclean, Ilya; Pergl, Jan; Saccone, Patrick; Senior, Rebecca; Shen, Ting; Słowińska, Sandra; Vandvik, Vigdis; von Oppen, Jonathan; Aalto, Juha; Ayalew, Biruk; Bates, Olivia; Bertelsmeier, Cleo; Bertrand, Romain; Beugnon, Rémy; Borderieux, Jeremy; Brůna, Josef; Buckley, Lauren; Bujan, Jelena; Casanova-Katny, Angelica; Christiansen, Ditte Marie; Collart, Flavien; de Lombaerde, Emiel; de Pauw, Karen; Depauw, Leen; Di Musciano, Michele; Díaz Borrego, Raquel; Díaz-Calafat, Joan; Ellis-Soto, Diego; Esteban, Raquel; de Jong, Geerte Fälthammar; Gallois, Elise; Garcia, Maria Begoña; Gillerot, Loïc; Greiser, Caroline; Gril, Eva; Haesen, Stef; Hampe, Arndt; Hedwall, Per‐ola; Hes, Gabriel; Hespanhol, Helena; Hoffrén, Raúl; Hylander, Kristoffer; Jiménez-Alfaro, Borja; Jucker, Tommaso; Klinges, David; Kolstela, Joonas; Kopecký, Martin; Kovács, Bence; Maeda, Eduardo Eiji; Máliš, František; Man, Matěj; Mathiak, Corrie; Meineri, Eric; Naujokaitis-Lewis, Ilona; Nijs, Ivan; Normand, Signe; Nuñez, Martin; Orczewska, Anna; Peña-Aguilera, Pablo; Pincebourde, Sylvain; Plichta, Roman; Quick, Susan; Renault, David; Ricci, Lorenzo; Rissanen, Tuuli; Segura-Hernández, Laura; Selvi, Federico; Serra-Diaz, Josep; Soifer, Lydia; Spicher, Fabien; Svenning, Jens‐christian; Tamian, Anouch; Thomaes, Arno; Thoonen, Marijke; Trew, Brittany; van de Vondel, Stijn; van den Brink, Liesbeth; Vangansbeke, Pieter; Verdonck, Sanne; Vitkova, Michaela; Vives-Ingla, Maria; von Schmalensee, Loke; Wang, Runxi; Wild, Jan; Williamson, Joseph; Zellweger, Florian; Zhou, Xiaqu; Zuza, Emmanuel Junior; de Frenne, Pieter;Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Public Library of Science (PLoS) Funded by:EC | HISTFUNCEC| HISTFUNCAuthors: Sandra Ravnsbæk Holm; Jens-Christian Svenning;Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000-10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion.
PLoS ONE arrow_drop_down http://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0094021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert PLoS ONE arrow_drop_down http://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0094021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ...NSF| Collaborative Research: Mechanisms of tree population collapses in eastern North America: Disentangling causes of abrupt ecological change during the HoloceneAuthors: John W. Williams; Alejandro Ordonez; Jens-Christian Svenning;pmid: 33288870
During the Anthropocene and other eras of rapidly changing climates, rates of change of ecological systems can be described as fast, slow or abrupt. Fast ecological responses closely track climate change, slow responses substantively lag climate forcing, causing disequilibria and reduced fitness, and abrupt responses are characterized by nonlinear, threshold-type responses at rates that are large relative to background variability and forcing. All three kinds of climate-driven ecological dynamics are well documented in contemporary studies, palaeoecology and invasion biology. This fast-slow-abrupt conceptual framework helps unify a bifurcated climate-change literature, which tends to separately consider the ecological risks posed by slow or abrupt ecological dynamics. Given the prospect of ongoing climate change for the next several decades to centuries of the Anthropocene and wide variations in ecological rates of change, the theory and practice of managing ecological systems should shift attention from target states to target rates. A rates-focused framework broadens the strategic menu for managers to include options to both slow and accelerate ecological rates of change, seeks to reduce mismatch among climate and ecological rates of change, and provides a unified conceptual framework for tackling the distinct risks associated with fast, slow and abrupt ecological rates of change.
Theses@asb arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-01344-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Theses@asb arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-01344-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, France, New Zealand, Netherlands, Netherlands, Netherlands, New Zealand, France, Netherlands, United Kingdom, France, United States, France, Netherlands, Netherlands, Netherlands, Belgium, Spain, Denmark, NetherlandsPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | German Centre for Integra..., NSERCDFG| German Centre for Integrative Biodiversity Research - iDiv ,NSERCXu, Wu-Bing; Guo, Wen-Yong; Serra-Diaz, Josep; Schrodt, Franziska; Eiserhardt, Wolf; Enquist, Brian; Maitner, Brian; Merow, Cory; Violle, Cyrille; Anand, Madhur; Belluau, Michaël; Bruun, Hans Henrik; Byun, Chaeho; Catford, Jane; Cerabolini, Bruno E. L.; Chacón-Madrigal, Eduardo; Ciccarelli, Daniela; Cornelissen, J. Hans C.; Dang-Le, Anh Tuan; de Frutos, Angel; Dias, Arildo; Giroldo, Aelton; Gutiérrez, Alvaro; Hattingh, Wesley; He, Tianhua; Hietz, Peter; Hough-Snee, Nate; Jansen, Steven; Kattge, Jens; Komac, Benjamin; Kraft, Nathan J. B.; Kramer, Koen; Lavorel, Sandra; Lusk, Christopher; Martin, Adam; Ma, Ke-Ping; Mencuccini, Maurizio; Michaletz, Sean; Minden, Vanessa; Mori, Akira; Niinemets, Ülo; Onoda, Yusuke; Onstein, Renske; Peñuelas, Josep; Pillar, Valério; Pisek, Jan; Pound, Matthew; Robroek, Bjorn J. M.; Schamp, Brandon; Slot, Martijn; Sun, Miao; Sosinski, Ênio; Soudzilovskaia, Nadejda; Thiffault, Nelson; van Bodegom, Peter; van der Plas, Fons; Zheng, Jingming; Svenning, Jens-Christian; Ordonez, Alejandro;pmid: 37018407
pmc: PMC10075971
As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0346x249Data sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScience AdvancesArticle . 2023Diposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemLeiden University Scholarly Publications RepositoryArticle . 2023License: CC BYData sources: Leiden University Scholarly Publications RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0346x249Data sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScience AdvancesArticle . 2023Diposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemLeiden University Scholarly Publications RepositoryArticle . 2023License: CC BYData sources: Leiden University Scholarly Publications RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Wheeler, H.C.; Høye, Toke Thomas; Schmidt, Niels Martin; Svenning, J.-C.; Forchhammer, Mads C.;doi: 10.1890/14-0338.1
pmid: 26236873
Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long‐term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre‐flowering exposure to freezing temperatures and to the temperatures experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results indicate that shifting the timing of flowering affects the temperature experienced during flower development and flowering beyond that imposed by interannual variations in climate. We also found that phenological timing may affect flower abundance, and hence, fitness. These findings suggest that plant population responses to future climate change will be shaped not only by extrinsic climate forcing, but also by species' phenological responses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-0338.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-0338.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ArgentinaPublisher:Elsevier BV Jens-Christian Svenning; Zheng Niu; Julia Carolina Mata; Li Wang; Renata Nicora Chequín; Roberto Manuel Salas; Javier Elias Florentín; Wang Li; Wang Li; Robert Buitenwerf;handle: 11336/138260
Land-surface greening has been reported globally over the past decades. While often seen to represent ecosystem recovery, the impacts on biodiversity and society can also be negative. Greening has been widely reported from rangelands, where drivers and processes are complex due to its high environmental heterogeneity and societal dynamics. Here, we assess the complexity behind greening and assess its links to various drivers in an iconic, heterogeneous rangeland area, the Iberá Wetlands and surroundings, in Argentina. Time-series satellite imagery over the past 19 years showed overall net greening, but also substantial local browning both in protected and unprotected areas, linking to land use, temporal changes in surface water, fire, and weather. We found substantial woody expansion mainly in the unprotected land, with 37% contributed by tree plantations and the remaining 63% by spontaneous woody expansion, along with widespread transitions from terrestrial land to seasonal surface water. Fire occurrences tended to reduce greening with unprotected areas experiencing widespread and frequent fire. However, protected areas had more browning in unburnt areas than burned areas. Temporal variation in annual precipitation and temperature tended to nonlinearly influence fire occurrences with an interplay of human fire management, further shaping the vegetation greening, pointing to high complexity behind the observed rangeland greening involving interactions among local drivers. Our findings highlight that the observed overall greening is an outcome of multiple trends with clear negative impacts on biodiversity and the local livestock-oriented culture (notably expanding tree plantations) and spontaneous vegetation dynamics, partly involving spontaneous woody expansion. The latter has positive potential for biodiversity and ecosystem services in terms of woodland recovery, but can become negative in such a natural savanna region if expansions develop on a too broad scale, highlighting the importance of ensuring recovery of natural fire and herbivory regimes in protected areas along with sustainable rangeland management elsewhere.
Geography and Sustai... arrow_drop_down Geography and SustainabilityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Geography and Sustai... arrow_drop_down Geography and SustainabilityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Wiley Authors: Santiago José Elías Velazco; Jean‐Christian Svenning; Bruno R. Ribeiro; Livia Maira Orlandi Laureto;doi: 10.1111/ddi.13215
handle: 11336/132480
AbstractAimPalms are an ecologically and societally important plant group, with high diversity in the Neotropics. Here, we estimated the impacts of future climate change on phylogenetic diversity (PD) of Neotropical palms under varying climatic and dispersal scenarios, assessed the effectiveness of the established network of protected areas (PAs) for conserving palms PD today and in 2070, and identified priority areas for the conservation of palm species and their evolutionary history in the face of climate change.LocationNeotropics.MethodsWe used ecological niche modelling to estimate the distribution of 367 species in the present and for 2070 based on two greenhouse gas emission and two dispersal scenarios. We calculated Faith's PD within each five arc‐minute grid cell to evaluate the effectiveness of PAs relative to null models and used phylogenetic spatial prioritisation analysis to detect priority areas.ResultsWe found that even under the most optimistic climatic and dispersal scenarios, the established network of PAs performed poorly in safeguarding palms PD under both current conditions and those projected for 2070. Significant losses in PD inside PAs are expected under future climate conditions, especially if species are unable to disperse to suitable areas. Nevertheless, a modest and strategic increase in the number of PAs could considerably improve the protection of palms PD in the present and 2070.Main conclusionsThe PD of Neotropical palms is poorly represented within the established network of PAs, at both present and in 2070. A higher realised dispersal rates would diminish PD losses inside the network of PAs. The conservation of palm PD can be improved through the expansion of PAs in strategic regions such as the upper portion of the Amazon Basin, Tropical Andes and Mesoamerica.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | Collaborative Research: D..., NSF | PSCIC Full Proposal: The ..., NSF | NCEAS: National Center fo... +2 projectsNSF| Collaborative Research: Developing integrated trait-based scaling theory to predict community change and forest function in light of global change ,NSF| PSCIC Full Proposal: The iPlant Collaborative: A Cyberinfrastructure-Centered Community for a New Plant Biology ,NSF| NCEAS: National Center for Ecological Analysis and Synthesis ,NSF| Collaborative Research: Experimental Macroecology: Effects of Temperature on Biodiversity ,EC| LUCCASusan K. Wiser; Brian J. Enquist; Brian J. Enquist; Jens-Christian Svenning; Danilo M. Neves; Brody Sandel; Cory Merow; Susy Echeverría-Londoño; Andrew J. Kerkhoff; Robert K. Peet; Naia Morueta-Holme;Significance We explore an extended view of the tropical conservatism hypothesis to account for two often-neglected components of climatic stress: drought and the combined effect of seasonal cold and drought—the latter being a common feature of extratropical dry environments. We show that evolutionary diversity of angiosperm assemblages in extratropical dry biomes is even lower than in biomes subject to only one type of climatic stress. We further show that evolutionary diversity in many assemblages from eastern North America is higher or comparable to that of tropical moist forests, suggesting that some extratropical moist biomes have accumulated angiosperm lineages over deep evolutionary timescales with their flora assembled from lineages that represent the entirety of the angiosperm tree of life.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2021132118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2021132118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Contribution for newspaper or weekly magazine 2009 DenmarkPublisher:IOP Publishing Authors: Basse, Ellen Margrethe; Svenning, Jens-Christian; Olesen, Jørgen E; Besenbacher, Flemming; +3 AuthorsBasse, Ellen Margrethe; Svenning, Jens-Christian; Olesen, Jørgen E; Besenbacher, Flemming; Læssøe, Jeppe; Seidenkrantz, Marit-Solveig; Lange, Lene;More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5–7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2009 . Peer-reviewedData sources: CrossrefAalborg University Research PortalConference object . 2009Data sources: Aalborg University Research PortalPURE Aarhus UniversityContribution for newspaper or weekly magazine . 2009Data sources: PURE Aarhus Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/8/1/011002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2009 . Peer-reviewedData sources: CrossrefAalborg University Research PortalConference object . 2009Data sources: Aalborg University Research PortalPURE Aarhus UniversityContribution for newspaper or weekly magazine . 2009Data sources: PURE Aarhus Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/8/1/011002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 01 Jan 2023 France, Germany, United Kingdom, Italy, United States, Italy, Italy, France, United Kingdom, Italy, Italy, Austria, Germany, United Kingdom, United Kingdom, Czech Republic, Switzerland, Russian Federation, Russian Federation, Italy, Belgium, Denmark, Germany, Czech Republic, Germany, Netherlands, Italy, United Kingdom, Denmark, Switzerland, Italy, Italy, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Doctoral Dissertation Res..., UKRI | BIOmes of Brasil - Resili..., EC | T-FORCES +3 projectsNSF| Doctoral Dissertation Research: Effects of a Dispersal Barrier on Cultural Similarity in Wild Orangutans (Pongo pygmaeus wurmbii) ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| Tropical forests responses to a changing climate: a quest at the interface between trait-based ecology, forest dynamics and remote sensing ,EC| FUNDIVEUROPE ,SNSF| The functional biogeography of the global forest systemMa, Haozhi; Crowther, Thomas W.; Crowther, Thomas W.; Mo, Lidong; Maynard, Daniel S.; Renner, Susanne S.; Van Den Hoogen, Johan; Zou, Yibiao; Liang, Jingjing; De-Miguel, Sergio; Nabuurs, Gert-Jan; Reich, Peter B.; Niinemets, Ülo; Abegg, Meinrad; Adou Yao, Yves C.; Alberti, Giorgio; Almeyda Zambrano, Angelica M.; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana F.; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo A.; Baker, Timothy R.; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely G.; Bastian, Meredith L.; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro H. S.; Brandl, Susanne; Brearley, Francis Q.; Brienen, Roel; Broadbent, Eben N.; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo G.; Cesljar, Goran; Chazdon, Robin; Chen, Han Y. H.; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel D.; Coomes, David A.; Valverde, Fernando Cornejo; Corral-Rivas, José J.; Crim, Philip M.; Cumming, Jonathan R.; Dayanandan, Selvadurai; De Gasper, André L.; Decuyper, Mathieu; Derroire, Géraldine; DeVries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian J.; Eyre, Teresa J.; Fandohan, Adandé Belarmain; Fayle, Tom M.; Feldpausch, Ted R.; Ferreira, Leandro V.; Finér, Leena; Fischer, Markus; Fletcher, Christine; Fridman, Jonas; Frizzera, Lorenzo; Gamarra, Javier G. P.; Gianelle, Damiano; Glick, Henry B.; Harris, David J.; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John L.; Herold, Martin; Hillers, Annika; Honorio Coronado, Eurídice N.; Hui, Cang; Ibanez, Thomas T.; Amaral, Iêda; Imai, Nobuo; Jagodziński, Andrzej M.; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos A.; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah K.; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Khan, Mohammed Latif; Killeen, Timothy J.; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lewis, Simon L.; Lu, Huicui; Lukina, Natalia V.; Maitner, Brian S.; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew R.; Martin, Emanuel H.; Meave, Jorge A.; Melo-Cruz, Omar; Mendoza, Casimiro; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa S.; Mukul, Sharif A.; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor J.; Nevenic, Radovan V.; Ngugi, Michael R.; Niklaus, Pascal A.; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena I.; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo L.; Pfautsch, Sebastian; Phillips, Oliver L.; Picard, Nicolas; Piedade, Maria Teresa F.; Piotto, Daniel; Pitman, Nigel C. A.; Mendoza-Polo, Irina; Poulsen, Axel D.; Poulsen, John R.; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir G.; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric B.; Seben, Vladimír; Serra-Diaz, Josep M.; Sheil, Douglas; Shvidenko, Anatoly Z.; Silva-Espejo, Javier E.; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre F.; Miścicki, Stanislaw; Stereńczak, Krzysztof J.; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben;doi: 10.1038/s41477-023-01543-5 , 10.3929/ethz-b-000643725 , 10.60692/0g11z-dp323 , 10.5445/ir/1000163924 , 10.60692/d6bsp-27w45 , 10.48350/187399
pmid: 37872262
pmc: PMC10654052
AbstractUnderstanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYOpen Research ExeterArticle . 2023License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/37872262Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04288936Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254372Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/6xp502bdData sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82715Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-023-01543-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYOpen Research ExeterArticle . 2023License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/37872262Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04288936Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254372Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/6xp502bdData sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82715Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-023-01543-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2024 FranceKemppinen, Julia; Lembrechts, Jonas; van Meerbeek, Koenraad; Carnicer, Jofre; Chardon, Nathalie Isabelle; Kardol, Paul; Lenoir, Jonathan; Liu, Daijun; Maclean, Ilya; Pergl, Jan; Saccone, Patrick; Senior, Rebecca; Shen, Ting; Słowińska, Sandra; Vandvik, Vigdis; von Oppen, Jonathan; Aalto, Juha; Ayalew, Biruk; Bates, Olivia; Bertelsmeier, Cleo; Bertrand, Romain; Beugnon, Rémy; Borderieux, Jeremy; Brůna, Josef; Buckley, Lauren; Bujan, Jelena; Casanova-Katny, Angelica; Christiansen, Ditte Marie; Collart, Flavien; de Lombaerde, Emiel; de Pauw, Karen; Depauw, Leen; Di Musciano, Michele; Díaz Borrego, Raquel; Díaz-Calafat, Joan; Ellis-Soto, Diego; Esteban, Raquel; de Jong, Geerte Fälthammar; Gallois, Elise; Garcia, Maria Begoña; Gillerot, Loïc; Greiser, Caroline; Gril, Eva; Haesen, Stef; Hampe, Arndt; Hedwall, Per‐ola; Hes, Gabriel; Hespanhol, Helena; Hoffrén, Raúl; Hylander, Kristoffer; Jiménez-Alfaro, Borja; Jucker, Tommaso; Klinges, David; Kolstela, Joonas; Kopecký, Martin; Kovács, Bence; Maeda, Eduardo Eiji; Máliš, František; Man, Matěj; Mathiak, Corrie; Meineri, Eric; Naujokaitis-Lewis, Ilona; Nijs, Ivan; Normand, Signe; Nuñez, Martin; Orczewska, Anna; Peña-Aguilera, Pablo; Pincebourde, Sylvain; Plichta, Roman; Quick, Susan; Renault, David; Ricci, Lorenzo; Rissanen, Tuuli; Segura-Hernández, Laura; Selvi, Federico; Serra-Diaz, Josep; Soifer, Lydia; Spicher, Fabien; Svenning, Jens‐christian; Tamian, Anouch; Thomaes, Arno; Thoonen, Marijke; Trew, Brittany; van de Vondel, Stijn; van den Brink, Liesbeth; Vangansbeke, Pieter; Verdonck, Sanne; Vitkova, Michaela; Vives-Ingla, Maria; von Schmalensee, Loke; Wang, Runxi; Wild, Jan; Williamson, Joseph; Zellweger, Florian; Zhou, Xiaqu; Zuza, Emmanuel Junior; de Frenne, Pieter;Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu