- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Embargo end date: 03 Apr 2019Publisher:MDPI AG Laura Felício; Sofia T. Henriques; André Serrenho; Tiago Domingos; Tânia Sousa;We use the societal exergy analysis to identify periods and factors controlling efficiency dilution and carbon deepening of electricity in Portugal from 1900 to 2014. Besides estimating the carbon intensity of electricity production, we propose a new indicator, the carbon intensity of electricity use, which quantifies CO2/kWh of electricity derived useful exergy. Results show final to useful efficiency dilution until World War I (50% to 30%) due to a decrease in share of the high-efficiency transport sector and from mid-1940s to 1960 and mid-1990s onwards (58% to 47% and 47% to 40%) due to an increase in share of the low efficiency commercial and residential sector. Decarbonization from 1900 to mid-1960s, with carbon intensities of electricity production and use dropping respectively from 12.8 to 0.2 and from 33.6 to 0.4 kg CO2/kWh due to an increase in thermoelectricity efficiencies and an increase in share of hydro. Then, a period of carbon deepening until 1990 with carbon intensities tripling due to a shift in shares from hydro to thermoelectricity and more recently a period of decarbonization with carbon intensities decreasing to 0.35 and 0.9 kg CO2/kWh, due to the increase in renewable electricity despite a dilution in final to useful efficiency.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:MDPI AG Funded by:FCT | Laboratory for Robotics a..., EC | SusAnFCT| Laboratory for Robotics and Engineering Systems ,EC| SusAnAuthors: Ricardo Manso; Tânia Sousa; Tiago Domingos;doi: 10.3390/en11102522
Extended exergy accounting (EEA) is a methodology which estimates the extended exergy cost (EEC) of a product or a service or the extended exergy efficiency (EEE) of a country or economic sector taking into account materials, energy, labour, capital, and environmental impact. The use of EEA results for policy or planning purposes has been hampered by: (1) the lack of data to quantify the EEC of most of the inputs, making it almost impossible to quantify the EEC of a product or service and (2) the lack of a conceptual framework to quantify in a consistent way the exergy of labour and capital. In this paper, we make a review of past studies to identify, synthesize, and discuss the different EEA methods. We identified 3 different EEA methods, that we further compare using the Portuguese Agriculture, Forestry, and Fishery (AFF) sector from 2000 to 2012. The equivalent exergies of labour and capital estimated for the AFF sector vary widely among the three EEA methodologies. We propose and test a new EEA methodology to estimate EEE which accounts for these fluxes in a more restricted scope but more consistently and that includes the Environmental Benefit (EB) that represents the capability of the forestry to capture carbon dioxide. Results show that the EEE of the Portuguese AFF sector has increased by 32% from 2000 to 2012.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2522/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2522/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2009Publisher:American Association for the Advancement of Science (AAAS) Authors: Tiago Domingos; Tânia Sousa; Gonçalo M. Marques;pmid: 19729640
Hou et al . (Reports, 31 October 2008, p. 736) presented a model for energy uptake and allocation over an organism’s growth and development. However, their model does not account for allocation to reproduction (essential to adults) and growth without assimilation (essential to embryos) and is therefore only applicable to organisms growing with abundant food in the juvenile stage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:MDPI AG Authors: Miguel Palma; Tânia Sousa; Zeus Guevara;doi: 10.3390/en9050364
The current method used for calculating societal aggregated exergy efficiencies is reviewed. Cooling is introduced as an end-use category; conversion efficiencies for heating processes are obtained for each energy carrier; and electricity shares per end-use are retrieved for each sector, improving the accuracy of the estimated values of aggregated exergy efficiencies. We show that: (1) cooling uses are a relevant end-use in Portugal and that their introduction decreased overall efficiency by 3.4% in 2009; and (2) disaggregating the heating second law efficiencies for each energy carrier has a significant effect on the aggregated efficiencies of the country, decreasing aggregated efficiency by 1.3% in 2009. We studied two other factors that showed no significant impact on aggregated exergy efficiency: a technological lag of 10 years in the efficiency of stationary mechanical drive devices and the use of a year-specific ambient temperature to compute exergy efficiencies of heating processes.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/364/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/364/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Elsevier BV Authors: Tânia Sousa; Kai Whiting; Luis Gabriel Carmona;Abstract This paper reviews methods that measure mineral resource depletion based on cumulative exergy consumption approaches. It focuses on the exergy replacement cost (ERC), which measures the amount of exergy society would have to consume in order to re-concentrate an extracted and processed mineral to the point that it can be once more exploited by future generations. The ERC, which was originally only suitable for non-fuel minerals, was adapted and extended in 2016, by changing the focus of the ERC from the chemical composition of the resource to its function, to include fossil fuel depletion. This paper discusses the impact of these new developments and identifies conceptual and methodological weaknesses that need to be addressed for the ERC to find widespread use in exergy analysis and in order to assess the sustainability of mineral policy from the grave to the cradle.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.90 citations 90 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2020Publisher:IOP Publishing Funded by:FWF | The dual role of inequali..., EC | MAT_STOCKS, FWF | MISO Material Inputs, Sto...FWF| The dual role of inequality for sustainability ,EC| MAT_STOCKS ,FWF| MISO Material Inputs, Stocks and Outputs: A model of global material stocks and flowsAuthors: Fridolin Krausmann; Bartholomäus Leon-Gruchalski; Daniel Hausknost; Melanie Pichler; +13 AuthorsFridolin Krausmann; Bartholomäus Leon-Gruchalski; Daniel Hausknost; Melanie Pichler; Andreas Mayer; Doris Virág; Gerald Kalt; Tomer Fishman; Paul E. Brockway; Tânia Sousa; Felix Creutzig; Jan Streeck; Barbara Plank; Dominik Wiedenhofer; Anke Schaffartzik; Anke Schaffartzik; Helmut Haberl;Abstract As long as economic growth is a major political goal, decoupling growth from resource use and emissions is a prerequisite for a sustainable net-zero emissions future. However, empirical evidence for absolute decoupling, i.e. decreasing resource use and emissions at the required scale despite continued economic growth, is scarce and scattered across different research streams. In this two-part systematic review, we assess how and to what extent decoupling has been observed and what can be learnt for addressing the sustainability and climate crisis. Based on a transparent approach, we systematically identify and screen more than 11 500 scientific papers, eventually analyzing full texts of 835 empirical studies on the relationship between economic growth (GDP), resource use (materials and energy) and greenhouse gas emissions. Part I of the review examines how decoupling has been investigated across three research streams: energy, materials and energy, and emissions. Part II synthesizes the empirical evidence and policy implications (Haberl et al 2020 Environ. Res. Lett. 15 065003). In part I, we examine the topical, temporal and geographical scopes, methods of analysis, institutional networks and prevalent conceptual angles. We find that in this rapidly growing literature, the vast majority of studies—decomposition, ‘causality’ and Environmental Kuznets Curve analysis—approach the topic from a statistical-econometric point of view, while hardly acknowledging thermodynamic principles on the role of energy and materials for socio-economic activities. A potentially fundamental incompatibility between economic growth and systemic societal changes to address the climate crisis is rarely considered. We conclude that the existing wealth of empirical evidence merits braver conceptual advances than we have seen thus far. Future work should focus on comprehensive multi-indicator long-term analyses, conceptually grounded on the fundamental biophysical basis of socio-economic activities, incorporating the role of global supply chains as well as the wider societal role and preconditions of economic growth.
Environmental Resear... arrow_drop_down Environmental Research LettersArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 33 Powered by
more_vert Environmental Resear... arrow_drop_down Environmental Research LettersArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Bernardo Tostes; Matthew Kuperus Heun; Sofia T. Henriques; Paul E. Brockway; Tânia Sousa;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Zeus Guevara; Zeus Guevara; Tânia Sousa; SofiaTeives Henriques; SofiaTeives Henriques;Abstract The EU is committed to become climate-neutral by 2050 while keeping its prosperity intact. To align the bloc towards this goal, it is fundamental to understand the spatial differences in energy performance among its members. The present study aims to identify the main drivers of primary energy intensity differences among fourteen European countries (i.e., the EU15 without Luxemburg) during the period 2000–2010. To do so, we apply for the first time the multi-factor energy input-output model to spatial structural decomposition analysis. The results show that differences in the industrial direct energy intensity and in the mix of final energy demand were the driving factors of primary energy intensity differences among countries, while, remarkably, structural differences in both the energy sector and in the rest of the economy were not as relevant. This implies that deepening industrial and residential efficiency policies should be a key objective in addition to the current policy efforts to deploy renewables in the energy sector. In addition, we show that the proposed approach helps overcome the main shortcomings of conventional spatial decomposition approaches, e.g., the inconsistent accounting of energy conversion processes in the economy; and its detailed results can be translated into more effective policy making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors: Kai Whiting; Tânia Sousa; Luis Gabriel Carmona; Angeles Carrasco;Abstract Resource efficiency is a key component of sustainable policies and practices, particularly in industries with high energy demands. Using empirical data, this paper evaluates the long-term performance (1960–2009) of the United Kingdom steel sector through the exergy-based metrics of “resource efficiency” and “useful exergy efficiency”. The analysis is broken down into two production pathways: the basic oxygen furnace and the electric arc furnace. The scope includes electricity generation and steel refining. It incorporates energy and material inputs, as well as by-products as useful outputs. The exergy-based indicators demonstrate the benefit of measuring both the quality and quantity of resources. The results are contextualised to gain insights into the long-term impact of political and socioeconomic transitions on resource consumption trends. Over the period, the sector’s overall resource efficiency went from 19% to 32%. Between 2% and 4% of this improvement results from the reincorporation of by-products into production processes. The basic oxygen furnace route’s resource efficiency increased by 9% whilst the electric arc furnace route rose by 20%. These improvements occurred via the promotion of successful energy saving policies rather than the diversion of large amounts of scrap inputs into the furnaces. This paper shows that both the resource efficiency and useful exergy efficiency indicators are a valuable complement to the benchmark metrics (energy intensity and material efficiency). This is because they can quantify the interactions and trade-offs between energy and material flows.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:MDPI AG Authors: Kai Whiting; Luis Carmona; Angeles Carrasco; Tânia Sousa;doi: 10.3390/en10070979
The Exergy Replacement Cost (ERC) is an indicator that is used to ascertain the sustainability of non-renewable resource depletion. Specifically, it measures the amount of exergy society would have to expend if it were forced to re-capture and re-concentrate dispersed minerals back into a manmade usable deposit. Due to an assumption regarding the non-substitutability of fossil fuels, the original method failed to properly account for them. In fact, it sub-estimated their exergy replacement cost forty-seven-fold, on average, when considering solar radiation to fuel, and by approximately fivefold when going from crop to fuel. This new method, via the cumulative exergy consumption (CExC), calculates the exergy replacement cost of photosynthesis and bio-energy production, as together they form the best available technology when it comes to closing the carbon cycle. This approach ties together the “cradle to grave” to the “grave to cradle”, standardises the ERC calculations and enables comparisons between fuel and non-fuel mineral consumption. It also opens a discussion as to the role of the ERC in sustainability debates and whether resource depletion should be a matter of geological patrimony or material/energy services.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/7/979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/7/979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Embargo end date: 03 Apr 2019Publisher:MDPI AG Laura Felício; Sofia T. Henriques; André Serrenho; Tiago Domingos; Tânia Sousa;We use the societal exergy analysis to identify periods and factors controlling efficiency dilution and carbon deepening of electricity in Portugal from 1900 to 2014. Besides estimating the carbon intensity of electricity production, we propose a new indicator, the carbon intensity of electricity use, which quantifies CO2/kWh of electricity derived useful exergy. Results show final to useful efficiency dilution until World War I (50% to 30%) due to a decrease in share of the high-efficiency transport sector and from mid-1940s to 1960 and mid-1990s onwards (58% to 47% and 47% to 40%) due to an increase in share of the low efficiency commercial and residential sector. Decarbonization from 1900 to mid-1960s, with carbon intensities of electricity production and use dropping respectively from 12.8 to 0.2 and from 33.6 to 0.4 kg CO2/kWh due to an increase in thermoelectricity efficiencies and an increase in share of hydro. Then, a period of carbon deepening until 1990 with carbon intensities tripling due to a shift in shares from hydro to thermoelectricity and more recently a period of decarbonization with carbon intensities decreasing to 0.35 and 0.9 kg CO2/kWh, due to the increase in renewable electricity despite a dilution in final to useful efficiency.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:MDPI AG Funded by:FCT | Laboratory for Robotics a..., EC | SusAnFCT| Laboratory for Robotics and Engineering Systems ,EC| SusAnAuthors: Ricardo Manso; Tânia Sousa; Tiago Domingos;doi: 10.3390/en11102522
Extended exergy accounting (EEA) is a methodology which estimates the extended exergy cost (EEC) of a product or a service or the extended exergy efficiency (EEE) of a country or economic sector taking into account materials, energy, labour, capital, and environmental impact. The use of EEA results for policy or planning purposes has been hampered by: (1) the lack of data to quantify the EEC of most of the inputs, making it almost impossible to quantify the EEC of a product or service and (2) the lack of a conceptual framework to quantify in a consistent way the exergy of labour and capital. In this paper, we make a review of past studies to identify, synthesize, and discuss the different EEA methods. We identified 3 different EEA methods, that we further compare using the Portuguese Agriculture, Forestry, and Fishery (AFF) sector from 2000 to 2012. The equivalent exergies of labour and capital estimated for the AFF sector vary widely among the three EEA methodologies. We propose and test a new EEA methodology to estimate EEE which accounts for these fluxes in a more restricted scope but more consistently and that includes the Environmental Benefit (EB) that represents the capability of the forestry to capture carbon dioxide. Results show that the EEE of the Portuguese AFF sector has increased by 32% from 2000 to 2012.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2522/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2522/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2009Publisher:American Association for the Advancement of Science (AAAS) Authors: Tiago Domingos; Tânia Sousa; Gonçalo M. Marques;pmid: 19729640
Hou et al . (Reports, 31 October 2008, p. 736) presented a model for energy uptake and allocation over an organism’s growth and development. However, their model does not account for allocation to reproduction (essential to adults) and growth without assimilation (essential to embryos) and is therefore only applicable to organisms growing with abundant food in the juvenile stage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:MDPI AG Authors: Miguel Palma; Tânia Sousa; Zeus Guevara;doi: 10.3390/en9050364
The current method used for calculating societal aggregated exergy efficiencies is reviewed. Cooling is introduced as an end-use category; conversion efficiencies for heating processes are obtained for each energy carrier; and electricity shares per end-use are retrieved for each sector, improving the accuracy of the estimated values of aggregated exergy efficiencies. We show that: (1) cooling uses are a relevant end-use in Portugal and that their introduction decreased overall efficiency by 3.4% in 2009; and (2) disaggregating the heating second law efficiencies for each energy carrier has a significant effect on the aggregated efficiencies of the country, decreasing aggregated efficiency by 1.3% in 2009. We studied two other factors that showed no significant impact on aggregated exergy efficiency: a technological lag of 10 years in the efficiency of stationary mechanical drive devices and the use of a year-specific ambient temperature to compute exergy efficiencies of heating processes.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/364/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/364/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Elsevier BV Authors: Tânia Sousa; Kai Whiting; Luis Gabriel Carmona;Abstract This paper reviews methods that measure mineral resource depletion based on cumulative exergy consumption approaches. It focuses on the exergy replacement cost (ERC), which measures the amount of exergy society would have to consume in order to re-concentrate an extracted and processed mineral to the point that it can be once more exploited by future generations. The ERC, which was originally only suitable for non-fuel minerals, was adapted and extended in 2016, by changing the focus of the ERC from the chemical composition of the resource to its function, to include fossil fuel depletion. This paper discusses the impact of these new developments and identifies conceptual and methodological weaknesses that need to be addressed for the ERC to find widespread use in exergy analysis and in order to assess the sustainability of mineral policy from the grave to the cradle.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.90 citations 90 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2020Publisher:IOP Publishing Funded by:FWF | The dual role of inequali..., EC | MAT_STOCKS, FWF | MISO Material Inputs, Sto...FWF| The dual role of inequality for sustainability ,EC| MAT_STOCKS ,FWF| MISO Material Inputs, Stocks and Outputs: A model of global material stocks and flowsAuthors: Fridolin Krausmann; Bartholomäus Leon-Gruchalski; Daniel Hausknost; Melanie Pichler; +13 AuthorsFridolin Krausmann; Bartholomäus Leon-Gruchalski; Daniel Hausknost; Melanie Pichler; Andreas Mayer; Doris Virág; Gerald Kalt; Tomer Fishman; Paul E. Brockway; Tânia Sousa; Felix Creutzig; Jan Streeck; Barbara Plank; Dominik Wiedenhofer; Anke Schaffartzik; Anke Schaffartzik; Helmut Haberl;Abstract As long as economic growth is a major political goal, decoupling growth from resource use and emissions is a prerequisite for a sustainable net-zero emissions future. However, empirical evidence for absolute decoupling, i.e. decreasing resource use and emissions at the required scale despite continued economic growth, is scarce and scattered across different research streams. In this two-part systematic review, we assess how and to what extent decoupling has been observed and what can be learnt for addressing the sustainability and climate crisis. Based on a transparent approach, we systematically identify and screen more than 11 500 scientific papers, eventually analyzing full texts of 835 empirical studies on the relationship between economic growth (GDP), resource use (materials and energy) and greenhouse gas emissions. Part I of the review examines how decoupling has been investigated across three research streams: energy, materials and energy, and emissions. Part II synthesizes the empirical evidence and policy implications (Haberl et al 2020 Environ. Res. Lett. 15 065003). In part I, we examine the topical, temporal and geographical scopes, methods of analysis, institutional networks and prevalent conceptual angles. We find that in this rapidly growing literature, the vast majority of studies—decomposition, ‘causality’ and Environmental Kuznets Curve analysis—approach the topic from a statistical-econometric point of view, while hardly acknowledging thermodynamic principles on the role of energy and materials for socio-economic activities. A potentially fundamental incompatibility between economic growth and systemic societal changes to address the climate crisis is rarely considered. We conclude that the existing wealth of empirical evidence merits braver conceptual advances than we have seen thus far. Future work should focus on comprehensive multi-indicator long-term analyses, conceptually grounded on the fundamental biophysical basis of socio-economic activities, incorporating the role of global supply chains as well as the wider societal role and preconditions of economic growth.
Environmental Resear... arrow_drop_down Environmental Research LettersArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 33 Powered by
more_vert Environmental Resear... arrow_drop_down Environmental Research LettersArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Bernardo Tostes; Matthew Kuperus Heun; Sofia T. Henriques; Paul E. Brockway; Tânia Sousa;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Zeus Guevara; Zeus Guevara; Tânia Sousa; SofiaTeives Henriques; SofiaTeives Henriques;Abstract The EU is committed to become climate-neutral by 2050 while keeping its prosperity intact. To align the bloc towards this goal, it is fundamental to understand the spatial differences in energy performance among its members. The present study aims to identify the main drivers of primary energy intensity differences among fourteen European countries (i.e., the EU15 without Luxemburg) during the period 2000–2010. To do so, we apply for the first time the multi-factor energy input-output model to spatial structural decomposition analysis. The results show that differences in the industrial direct energy intensity and in the mix of final energy demand were the driving factors of primary energy intensity differences among countries, while, remarkably, structural differences in both the energy sector and in the rest of the economy were not as relevant. This implies that deepening industrial and residential efficiency policies should be a key objective in addition to the current policy efforts to deploy renewables in the energy sector. In addition, we show that the proposed approach helps overcome the main shortcomings of conventional spatial decomposition approaches, e.g., the inconsistent accounting of energy conversion processes in the economy; and its detailed results can be translated into more effective policy making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors: Kai Whiting; Tânia Sousa; Luis Gabriel Carmona; Angeles Carrasco;Abstract Resource efficiency is a key component of sustainable policies and practices, particularly in industries with high energy demands. Using empirical data, this paper evaluates the long-term performance (1960–2009) of the United Kingdom steel sector through the exergy-based metrics of “resource efficiency” and “useful exergy efficiency”. The analysis is broken down into two production pathways: the basic oxygen furnace and the electric arc furnace. The scope includes electricity generation and steel refining. It incorporates energy and material inputs, as well as by-products as useful outputs. The exergy-based indicators demonstrate the benefit of measuring both the quality and quantity of resources. The results are contextualised to gain insights into the long-term impact of political and socioeconomic transitions on resource consumption trends. Over the period, the sector’s overall resource efficiency went from 19% to 32%. Between 2% and 4% of this improvement results from the reincorporation of by-products into production processes. The basic oxygen furnace route’s resource efficiency increased by 9% whilst the electric arc furnace route rose by 20%. These improvements occurred via the promotion of successful energy saving policies rather than the diversion of large amounts of scrap inputs into the furnaces. This paper shows that both the resource efficiency and useful exergy efficiency indicators are a valuable complement to the benchmark metrics (energy intensity and material efficiency). This is because they can quantify the interactions and trade-offs between energy and material flows.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:MDPI AG Authors: Kai Whiting; Luis Carmona; Angeles Carrasco; Tânia Sousa;doi: 10.3390/en10070979
The Exergy Replacement Cost (ERC) is an indicator that is used to ascertain the sustainability of non-renewable resource depletion. Specifically, it measures the amount of exergy society would have to expend if it were forced to re-capture and re-concentrate dispersed minerals back into a manmade usable deposit. Due to an assumption regarding the non-substitutability of fossil fuels, the original method failed to properly account for them. In fact, it sub-estimated their exergy replacement cost forty-seven-fold, on average, when considering solar radiation to fuel, and by approximately fivefold when going from crop to fuel. This new method, via the cumulative exergy consumption (CExC), calculates the exergy replacement cost of photosynthesis and bio-energy production, as together they form the best available technology when it comes to closing the carbon cycle. This approach ties together the “cradle to grave” to the “grave to cradle”, standardises the ERC calculations and enables comparisons between fuel and non-fuel mineral consumption. It also opens a discussion as to the role of the ERC in sustainability debates and whether resource depletion should be a matter of geological patrimony or material/energy services.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/7/979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/7/979/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
