- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:EC | 20-20 3D MEDIA, EC | HeLLoEC| 20-20 3D MEDIA ,EC| HeLLoMirco Andreotti; Dario Bottino-Leone; Marta Calzolari; Pietromaria Davoli; Luisa Dias Pereira; Elena Lucchi; Alexandra Troi;doi: 10.3390/en13133362
handle: 11392/2421146 , 11381/2883000 , 11571/1508821
The hygrothermal behaviour of an internally insulated historic wall is still hard to predict, mainly because the physical characteristics of the materials composing the historic wall are unknown. In this study, the hygrothermal assessment of an internally thermal insulated masonry wall of an historic palace located in Ferrara, in Italy, is shown. In situ non-destructive monitoring method is combined with a hygrothermal simulation tool, aiming to better analyse and discuss future refurbishment scenarios. In this context, the original U-value of the wall (not refurbished) is decreased from 1.44 W/m2K to 0.26 W/m2K (10 cm stone wool). Under the site specific conditions of this wall, not reached by the sun or rain, it was verified that even in the absence of vapour barrier, no frost damage is likely to occur and the condensation risk is very limited. Authors proposed further discussion based on simulation. The results showed that the introduction of a second gypsum board to the studied technology compensated such absence, while the reduction of the insulation material thickness provides a reduction of RH peaks in the interstitial area by 1%; this second solution proved to be more efficient, providing a 3% RH reduction and the avoidance of further thermal losses.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3362/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: http://hdl.handle.net/11381/2883000Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3362/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: http://hdl.handle.net/11381/2883000Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 02 Jan 2025 SwitzerlandPublisher:MDPI AG Authors: Yihan Zhang; Tianyi Chen; Eugenia Gasparri; Elena Lucchi;As cities confront multiple challenges such as climate change, urbanization, and food security, growing attention has been given to sustainable vertical farming and renewable energy solutions. Building facades, typically underutilized in high-density urban environments, present an opportunity for multifunctional buildings composed of both photovoltaic (PV) systems and vertical farming modules. However, on vertical surfaces, these two systems often compete for space. This research focuses on the development of a multifunctional agrivoltaics building envelope (ABE) system, combining building-integrated PV (BIPV) technology with hydroponic vertical farming. This ABE system adopts a modular design approach, where each unit can be prefabricated independently and assembled through an interlocking connection design and bolted fastening to ensure ease of construction and scalability. The design process includes the development of 2D cross-sectional technical design, assembly sequences, and an analysis of key design parameters through 3D modeling. The research adopts a combined Research through Design (RtD) and Research for Design (RfD) approach to bridge prototyping, testing, and performance optimization. This research highlights the potential of integrating renewable energy with agricultural production in building envelope systems. By addressing space optimization and multifunctionality, the research provides a practical framework for future applications in urban sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su17020666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su17020666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Mohsen Aboulnaga; Fatma Ashour; Maryam Elsharkawy; Elena Lucchi; Sarah Gamal; Aya Elmarakby; Shahenda Haggagy; Noureen Karar; Nourhan H. Khashaba; Ahmed Abouaiana;doi: 10.3390/land14020382
Cities, particularly megacities, face significant challenges in transitioning toward sustainability. Many countries have developed dual or multiple capitals for diverse purposes (e.g., political, administrative, economic, touristic, and cultural). Limited research exists on the ‘15-minute city’ (15-MC) concept, particularly in regions like Middle East and North Africa (MENA region). This study evaluates the application of the ‘15-MC’ concept globally and regionally to derive Urban Planning Principles (UPPs) and indicators for livability and accessibility. Using a theoretical framework supported by site visits and quantitative assessments, the research examines two districts in the NAC as case studies. Key UPPs (e.g., proximity to services, mixed-use development, public transport, green spaces, community engagement, local economy, and sustainability) were evaluated along with walkability scores, bike infrastructure, and environmental impact indicators. The results reveal that most services in the two districts are accessible within a 15-minute walk or bike ride. However, essential facilities (e.g., universities and hospitals) exceed this threshold (20–30 min). The green area per inhabitant (17 m2/capita) meets WHO and European recommendations. The NAC has clean, green public transportation and 94.26 km of cycling lanes. For the sustainability indicator, air pollutants (PM10 and NO2) slightly exceed the WHO guidelines, but SO2 and Ozone levels are below the limits. The estimated waste per capita (274 kg) is lower than Cario and other counties. The findings suggest the NAC has the potential to fulfill the 15-MC concept through mixed-use developments, accessibility, and sustainable planning. This study serves for future research and modeling of the NAC when it is fully occupied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land14020382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land14020382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | EFFESUSEC| EFFESUSLucchi E; Becherini F; Di Tuccio MC; Troi A; Frick J; Roberti F; Hermann C; Fairnington I; Mezzasalma G; Pockele L; Bernardi A;handle: 20.500.14243/367169 , 11571/1508872
Research and development of cost-effective, high-performance thermal insulation materials for the construction sector has to be focused on their final application. In particular, solutions for refurbishing historic buildings, which represent 40% of the European building stock, have to offer a good compromise between environmental quality, energy efficiency and conservation aspects. In this paper, the experimental assessment of an insulation material based on aerogel technology, recently developed in the European project EFFESUS, is presented with regard to the material's thermal performance, compatibility with historic fabric and reversibility. The overall results obtained in laboratory testing on a real-size mock-up and in a real-world case application indicate that the new material is a promising solution for retrofitting historic buildings, thanks to its thermal properties, easy application, reversibility and material compatibility.
CNR ExploRA arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2017.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CNR ExploRA arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2017.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Lucchi, Elena;doi: 10.3390/su15043783
handle: 11571/1508517
Sustainable pedagogical approaches and practices have changed during the years, generating a set of philosophical, theoretical, and scientific concepts. Inside them, regenerative design is a proactive method based on systemic frameworks and developmental processes for maintaining the integrity of natural ecosystems, also enhancing human life, environmental awareness, social equity, and economic sustainability through the support of codesign techniques. This approach is widely used in architectural design, both for existing and heritage buildings, to address negative impacts of global warming, climate change, urban sprawl, touristic pressure, and other contemporary challenging phenomena. Specific workflows for archaeological sites have been never proposed, despite the fact that these sites face problems and risks completely different from other cultural heritage settings (e.g., physical development, pollution, tourism pressure, vandalism, looting, inappropriate excavations or interventions, lack of maintenance, funding, and legislation). This study presents a multicriteria decision analysis workflow for preserving and regenerating archaeological sites in a sustainable way through a deep understanding of current problems, values, features, and risks at urban and building levels. This method is tested with a pedagogical experiment at the UNESCO Site of Casterseprio (Italy), to investigate the interaction between heritage, environmental, social, and economic dynamics as well as to define its feasibility, applicability, limitations, and opportunities for further developments. The didactic process is supported by a participatory program among the key players of the site (owners, heritage and public authorities, and local associations), to create strong public support and a shared vision of the sustainable regeneration of the area. Differences between traditional and regenerative design processes, key design principles, shared criteria, replicability, novelty, and limitations of the pedagogic approach are also identified. Key findings of the present study are: (i) students need clear and shared design workflows for supporting their design projects; (ii) “regenerative design” involves multilevel dynamic training methodologies that motivate and involve the student while also improving their consciousness; (iii) the cooperation and the involvement of the stakeholders is important to favor a human-centered approach based also on social and economic interactions; (iv) digital technologies are fundamental for quantifying the key performance indicators in each design stage; (v) “regenerative design” boosts long-term planning and financial self-sustainability of the intervention; and (vi) multicultural design teams producing more innovative design ideas.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/4/3783/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/4/3783/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Lucchi, Elena;handle: 11571/1508868
Abstract From a wide range of bibliography (148 publications composed by books, guidelines, scientific papers, and other documents), the study presents a critical review of the use of the infrared thermography (IRT) survey in the building energy audit. After explaining its historical growth, the applicability of passive and active approaches has been described, considering well-established and emerging techniques, general procedures, types of IR-camera used, technical issues, and limitations. The passive approach is the most common to detect thermally significant defects. Thus, a specific procedure for the energy audit has been reported, matching different standards, guidelines, and professional advice. Similarly, recurring energy related problems are toughly presented (i.e. thermal characterization of buildings; thermal bridging, insulation level, air leakage and moisture detection; indoor temperature and U-value measurements; human comfort assessment). Finally, advantages and potential sources of errors as well as future trends in the use of IRT for the energy audit have been described. The research aims to serve as a reference for energy auditors and thermographers, to decide upon the best procedure for detecting specific energy defects.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Authors: Lucchi, Elena;handle: 11571/1508516
The current legislative framework and the recent energy crisis ask for massive applications of renewable energy sources (RES) in the built environment to reduce energy demand, environmental emissions, and energy costs. The uncritical application of these policies, especially on architectural heritage, could generate serious conservation issues, compromising their heritage values, biodiversity, traditional appearance, and materiality. Thus, there is an urgent call to balance architectural heritage preservation with energy production using clear rules, policies, criteria, and heritage-compatible technologies. The present study aims at defining an updated overview of the application of solar, wind, geothermal energy, and bioenergy on architectural heritage. A deep literature review of the studies published in the years 2020–2023 has been performed, identifying main topics, challenges, advanced solutions, and future perspectives. Acceptability, design criteria, and cutting-edge technologies are also illustrated through case studies to better understand practical approaches.
Buildings arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13030631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Buildings arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13030631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Elena Lucchi; Isabella Dall'Orto; Alessia Peluchetti; Linda Toledo; Martina Pelle; Cristina Polo López; Giulia Guazzi;handle: 11571/1508829
The launch on the market of innovative highly customized products, with a low visual impact colour and aesthetically wise promoted the integration of photovoltaic (PV) systems in protected areas. Despite the aesthetic, economic and energy advances, their integration therein is hampered by several legislative, and procedural barriers. For this reason, the study aims at reconstructing a European, Italian, and Swiss legislative and authorization framework to highlight prospects, potential, limits, and points of contact among such territories. The working methodology is structured in four parts: (i) the reference context's legislative analysis; (ii) definition of authorization processes; (iii) discussion with stakeholders; (iv) critical summary of the results. Thanks also to the introduction of specific targets and economic incentives, policies implemented in all territorial contexts push the use of solar energy in new buildings and restructuring. Several focus groups have been organized to discuss the existing legislation with different professional target groups (Heritage and Public Authorities, Designers). The results show that in Italy, due to the complex and fragmented authorization process, PV implementation slowed down over the years. In Switzerland, however, clearer criteria and simpler procedures encouraged their diffusion. In both territories, stakeholders need more training and updating about PV technologies, integration criteria, and implementation processes.
Energy Policy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy Policy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Janusz Marchwiński; Vuk Milošević; Anna Stefańska; Elena Lucchi;doi: 10.3390/en16165945
handle: 11571/1508497
A dynamic development in building-integrated photovoltaics (BIPVs) has been observed in recent years. One of the manifestations of this trend is the integration of photovoltaic cells with tensile membrane structures, including canopies. Such solutions bring mutual benefits—the roofs provide a potentially large area for the application of photovoltaic cells while contributing to the improvement of the energy efficiency of the building. However, what is lacking is thorough research on the most favourable photovoltaic cell exposure within these roofs. This paper investigates the optimal position of photovoltaic cells in terms of energy gains related to exposure to solar radiation. Hypar geometries were simulated as the most characteristic of tensile membrane roofs and, simultaneously, the least obvious in the research context. Simulations were performed for 54 roof samples with the following geometric variables: roof height (1.0, 3.0 m) and membrane prestress (1:3, 1:1, 3:1). The research was conducted for three roof orientations defined by azimuth angles of 0, 22.5, and 45 degrees and three geographic locations, Oslo, Vienna, and Lisbon, representing Northern, Central, and Southern Europe, respectively. The Sofistik and Rhino + Ladybug software were used to create models and simulations. The study results show significant differences in the roof irradiation and, consequently, the optimal location of BIPVs depending on the above variables. Generally, it is the curvature that is the most important variable-less curved roofs are more irradiated and thus more suitable for BIPVs. Prestress and the azimuth angle are of lesser significance, but defining the optimal use of a BIPV depends on the adopted scenario regarding the percentage of membrane coverage with PVs—other recommendations concern the strategy of total or partial roof coverage with PV cells. The difference between optimally and incorrectly designed roofs may amount to a 50% electricity gain from PV cells.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5945/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5945/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Authors: Marchwiński, Janusz; Lucchi, Elena;handle: 11571/1508471
The growing interest in applying photovoltaics for construction results in solutions based on the concept of integration with the architecture of the building and its surroundings. This means that the challenge lies not only in the technical integration itself but also in a strictly relationship with architecture. The study aims at determining a critical history of the evolution of photovoltaic architecture, narrowing down its role in the contemporary architecture design, in terms of firmitas (structure), utilitas (functionality), and venustas (aesthetics) of the building as well as its relationship with the environment. This study offers an architectural perspective on the design approaches through the carefully selection of several case study to illustrate main topics, design criteria, limitations, and challenges with a broad spectrum of interpretation. The results demonstrate that the development of integrated photovoltaic systems strengthens the relationship between PV technology and architecture in terms of structure, utility, and aesthetics. This relationship is synergistic and stimulates the parallel development of photovoltaic technology and architectural solutions.
Solar Energy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:EC | 20-20 3D MEDIA, EC | HeLLoEC| 20-20 3D MEDIA ,EC| HeLLoMirco Andreotti; Dario Bottino-Leone; Marta Calzolari; Pietromaria Davoli; Luisa Dias Pereira; Elena Lucchi; Alexandra Troi;doi: 10.3390/en13133362
handle: 11392/2421146 , 11381/2883000 , 11571/1508821
The hygrothermal behaviour of an internally insulated historic wall is still hard to predict, mainly because the physical characteristics of the materials composing the historic wall are unknown. In this study, the hygrothermal assessment of an internally thermal insulated masonry wall of an historic palace located in Ferrara, in Italy, is shown. In situ non-destructive monitoring method is combined with a hygrothermal simulation tool, aiming to better analyse and discuss future refurbishment scenarios. In this context, the original U-value of the wall (not refurbished) is decreased from 1.44 W/m2K to 0.26 W/m2K (10 cm stone wool). Under the site specific conditions of this wall, not reached by the sun or rain, it was verified that even in the absence of vapour barrier, no frost damage is likely to occur and the condensation risk is very limited. Authors proposed further discussion based on simulation. The results showed that the introduction of a second gypsum board to the studied technology compensated such absence, while the reduction of the insulation material thickness provides a reduction of RH peaks in the interstitial area by 1%; this second solution proved to be more efficient, providing a 3% RH reduction and the avoidance of further thermal losses.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3362/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: http://hdl.handle.net/11381/2883000Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3362/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: http://hdl.handle.net/11381/2883000Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 02 Jan 2025 SwitzerlandPublisher:MDPI AG Authors: Yihan Zhang; Tianyi Chen; Eugenia Gasparri; Elena Lucchi;As cities confront multiple challenges such as climate change, urbanization, and food security, growing attention has been given to sustainable vertical farming and renewable energy solutions. Building facades, typically underutilized in high-density urban environments, present an opportunity for multifunctional buildings composed of both photovoltaic (PV) systems and vertical farming modules. However, on vertical surfaces, these two systems often compete for space. This research focuses on the development of a multifunctional agrivoltaics building envelope (ABE) system, combining building-integrated PV (BIPV) technology with hydroponic vertical farming. This ABE system adopts a modular design approach, where each unit can be prefabricated independently and assembled through an interlocking connection design and bolted fastening to ensure ease of construction and scalability. The design process includes the development of 2D cross-sectional technical design, assembly sequences, and an analysis of key design parameters through 3D modeling. The research adopts a combined Research through Design (RtD) and Research for Design (RfD) approach to bridge prototyping, testing, and performance optimization. This research highlights the potential of integrating renewable energy with agricultural production in building envelope systems. By addressing space optimization and multifunctionality, the research provides a practical framework for future applications in urban sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su17020666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su17020666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Mohsen Aboulnaga; Fatma Ashour; Maryam Elsharkawy; Elena Lucchi; Sarah Gamal; Aya Elmarakby; Shahenda Haggagy; Noureen Karar; Nourhan H. Khashaba; Ahmed Abouaiana;doi: 10.3390/land14020382
Cities, particularly megacities, face significant challenges in transitioning toward sustainability. Many countries have developed dual or multiple capitals for diverse purposes (e.g., political, administrative, economic, touristic, and cultural). Limited research exists on the ‘15-minute city’ (15-MC) concept, particularly in regions like Middle East and North Africa (MENA region). This study evaluates the application of the ‘15-MC’ concept globally and regionally to derive Urban Planning Principles (UPPs) and indicators for livability and accessibility. Using a theoretical framework supported by site visits and quantitative assessments, the research examines two districts in the NAC as case studies. Key UPPs (e.g., proximity to services, mixed-use development, public transport, green spaces, community engagement, local economy, and sustainability) were evaluated along with walkability scores, bike infrastructure, and environmental impact indicators. The results reveal that most services in the two districts are accessible within a 15-minute walk or bike ride. However, essential facilities (e.g., universities and hospitals) exceed this threshold (20–30 min). The green area per inhabitant (17 m2/capita) meets WHO and European recommendations. The NAC has clean, green public transportation and 94.26 km of cycling lanes. For the sustainability indicator, air pollutants (PM10 and NO2) slightly exceed the WHO guidelines, but SO2 and Ozone levels are below the limits. The estimated waste per capita (274 kg) is lower than Cario and other counties. The findings suggest the NAC has the potential to fulfill the 15-MC concept through mixed-use developments, accessibility, and sustainable planning. This study serves for future research and modeling of the NAC when it is fully occupied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land14020382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land14020382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | EFFESUSEC| EFFESUSLucchi E; Becherini F; Di Tuccio MC; Troi A; Frick J; Roberti F; Hermann C; Fairnington I; Mezzasalma G; Pockele L; Bernardi A;handle: 20.500.14243/367169 , 11571/1508872
Research and development of cost-effective, high-performance thermal insulation materials for the construction sector has to be focused on their final application. In particular, solutions for refurbishing historic buildings, which represent 40% of the European building stock, have to offer a good compromise between environmental quality, energy efficiency and conservation aspects. In this paper, the experimental assessment of an insulation material based on aerogel technology, recently developed in the European project EFFESUS, is presented with regard to the material's thermal performance, compatibility with historic fabric and reversibility. The overall results obtained in laboratory testing on a real-size mock-up and in a real-world case application indicate that the new material is a promising solution for retrofitting historic buildings, thanks to its thermal properties, easy application, reversibility and material compatibility.
CNR ExploRA arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2017.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CNR ExploRA arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2017.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Lucchi, Elena;doi: 10.3390/su15043783
handle: 11571/1508517
Sustainable pedagogical approaches and practices have changed during the years, generating a set of philosophical, theoretical, and scientific concepts. Inside them, regenerative design is a proactive method based on systemic frameworks and developmental processes for maintaining the integrity of natural ecosystems, also enhancing human life, environmental awareness, social equity, and economic sustainability through the support of codesign techniques. This approach is widely used in architectural design, both for existing and heritage buildings, to address negative impacts of global warming, climate change, urban sprawl, touristic pressure, and other contemporary challenging phenomena. Specific workflows for archaeological sites have been never proposed, despite the fact that these sites face problems and risks completely different from other cultural heritage settings (e.g., physical development, pollution, tourism pressure, vandalism, looting, inappropriate excavations or interventions, lack of maintenance, funding, and legislation). This study presents a multicriteria decision analysis workflow for preserving and regenerating archaeological sites in a sustainable way through a deep understanding of current problems, values, features, and risks at urban and building levels. This method is tested with a pedagogical experiment at the UNESCO Site of Casterseprio (Italy), to investigate the interaction between heritage, environmental, social, and economic dynamics as well as to define its feasibility, applicability, limitations, and opportunities for further developments. The didactic process is supported by a participatory program among the key players of the site (owners, heritage and public authorities, and local associations), to create strong public support and a shared vision of the sustainable regeneration of the area. Differences between traditional and regenerative design processes, key design principles, shared criteria, replicability, novelty, and limitations of the pedagogic approach are also identified. Key findings of the present study are: (i) students need clear and shared design workflows for supporting their design projects; (ii) “regenerative design” involves multilevel dynamic training methodologies that motivate and involve the student while also improving their consciousness; (iii) the cooperation and the involvement of the stakeholders is important to favor a human-centered approach based also on social and economic interactions; (iv) digital technologies are fundamental for quantifying the key performance indicators in each design stage; (v) “regenerative design” boosts long-term planning and financial self-sustainability of the intervention; and (vi) multicultural design teams producing more innovative design ideas.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/4/3783/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/4/3783/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Lucchi, Elena;handle: 11571/1508868
Abstract From a wide range of bibliography (148 publications composed by books, guidelines, scientific papers, and other documents), the study presents a critical review of the use of the infrared thermography (IRT) survey in the building energy audit. After explaining its historical growth, the applicability of passive and active approaches has been described, considering well-established and emerging techniques, general procedures, types of IR-camera used, technical issues, and limitations. The passive approach is the most common to detect thermally significant defects. Thus, a specific procedure for the energy audit has been reported, matching different standards, guidelines, and professional advice. Similarly, recurring energy related problems are toughly presented (i.e. thermal characterization of buildings; thermal bridging, insulation level, air leakage and moisture detection; indoor temperature and U-value measurements; human comfort assessment). Finally, advantages and potential sources of errors as well as future trends in the use of IRT for the energy audit have been described. The research aims to serve as a reference for energy auditors and thermographers, to decide upon the best procedure for detecting specific energy defects.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Authors: Lucchi, Elena;handle: 11571/1508516
The current legislative framework and the recent energy crisis ask for massive applications of renewable energy sources (RES) in the built environment to reduce energy demand, environmental emissions, and energy costs. The uncritical application of these policies, especially on architectural heritage, could generate serious conservation issues, compromising their heritage values, biodiversity, traditional appearance, and materiality. Thus, there is an urgent call to balance architectural heritage preservation with energy production using clear rules, policies, criteria, and heritage-compatible technologies. The present study aims at defining an updated overview of the application of solar, wind, geothermal energy, and bioenergy on architectural heritage. A deep literature review of the studies published in the years 2020–2023 has been performed, identifying main topics, challenges, advanced solutions, and future perspectives. Acceptability, design criteria, and cutting-edge technologies are also illustrated through case studies to better understand practical approaches.
Buildings arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13030631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Buildings arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13030631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Elena Lucchi; Isabella Dall'Orto; Alessia Peluchetti; Linda Toledo; Martina Pelle; Cristina Polo López; Giulia Guazzi;handle: 11571/1508829
The launch on the market of innovative highly customized products, with a low visual impact colour and aesthetically wise promoted the integration of photovoltaic (PV) systems in protected areas. Despite the aesthetic, economic and energy advances, their integration therein is hampered by several legislative, and procedural barriers. For this reason, the study aims at reconstructing a European, Italian, and Swiss legislative and authorization framework to highlight prospects, potential, limits, and points of contact among such territories. The working methodology is structured in four parts: (i) the reference context's legislative analysis; (ii) definition of authorization processes; (iii) discussion with stakeholders; (iv) critical summary of the results. Thanks also to the introduction of specific targets and economic incentives, policies implemented in all territorial contexts push the use of solar energy in new buildings and restructuring. Several focus groups have been organized to discuss the existing legislation with different professional target groups (Heritage and Public Authorities, Designers). The results show that in Italy, due to the complex and fragmented authorization process, PV implementation slowed down over the years. In Switzerland, however, clearer criteria and simpler procedures encouraged their diffusion. In both territories, stakeholders need more training and updating about PV technologies, integration criteria, and implementation processes.
Energy Policy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy Policy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Janusz Marchwiński; Vuk Milošević; Anna Stefańska; Elena Lucchi;doi: 10.3390/en16165945
handle: 11571/1508497
A dynamic development in building-integrated photovoltaics (BIPVs) has been observed in recent years. One of the manifestations of this trend is the integration of photovoltaic cells with tensile membrane structures, including canopies. Such solutions bring mutual benefits—the roofs provide a potentially large area for the application of photovoltaic cells while contributing to the improvement of the energy efficiency of the building. However, what is lacking is thorough research on the most favourable photovoltaic cell exposure within these roofs. This paper investigates the optimal position of photovoltaic cells in terms of energy gains related to exposure to solar radiation. Hypar geometries were simulated as the most characteristic of tensile membrane roofs and, simultaneously, the least obvious in the research context. Simulations were performed for 54 roof samples with the following geometric variables: roof height (1.0, 3.0 m) and membrane prestress (1:3, 1:1, 3:1). The research was conducted for three roof orientations defined by azimuth angles of 0, 22.5, and 45 degrees and three geographic locations, Oslo, Vienna, and Lisbon, representing Northern, Central, and Southern Europe, respectively. The Sofistik and Rhino + Ladybug software were used to create models and simulations. The study results show significant differences in the roof irradiation and, consequently, the optimal location of BIPVs depending on the above variables. Generally, it is the curvature that is the most important variable-less curved roofs are more irradiated and thus more suitable for BIPVs. Prestress and the azimuth angle are of lesser significance, but defining the optimal use of a BIPV depends on the adopted scenario regarding the percentage of membrane coverage with PVs—other recommendations concern the strategy of total or partial roof coverage with PV cells. The difference between optimally and incorrectly designed roofs may amount to a 50% electricity gain from PV cells.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5945/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5945/pdfData sources: Multidisciplinary Digital Publishing InstituteIRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Authors: Marchwiński, Janusz; Lucchi, Elena;handle: 11571/1508471
The growing interest in applying photovoltaics for construction results in solutions based on the concept of integration with the architecture of the building and its surroundings. This means that the challenge lies not only in the technical integration itself but also in a strictly relationship with architecture. The study aims at determining a critical history of the evolution of photovoltaic architecture, narrowing down its role in the contemporary architecture design, in terms of firmitas (structure), utilitas (functionality), and venustas (aesthetics) of the building as well as its relationship with the environment. This study offers an architectural perspective on the design approaches through the carefully selection of several case study to illustrate main topics, design criteria, limitations, and challenges with a broad spectrum of interpretation. The results demonstrate that the development of integrated photovoltaic systems strengthens the relationship between PV technology and architecture in terms of structure, utility, and aesthetics. This relationship is synergistic and stimulates the parallel development of photovoltaic technology and architectural solutions.
Solar Energy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu