- home
- Advanced Search
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Funded by:EC | iAtlantic, EC | ATLASEC| iAtlantic ,EC| ATLASKazanidis, Georgios; Henry, Lea-Anne; Vad, Johanne; Johnson, Clare; De Clippele, Laurence Helene; Roberts, J Murray;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 Norway, NetherlandsPublisher:Wiley Funded by:EC | ATLAS, EC | iAtlantic, NWO | Surviving in a Deep-Sea D...EC| ATLAS ,EC| iAtlantic ,NWO| Surviving in a Deep-Sea Desert - Uncovering the Functioning of Cold-Water Coral Reefs in the Deep OceanMaier, Sandra; Brooke, Sandra; De Clippelle, Laurence; De Froe, Evert; Van Der Kaaden, Anna-Selma; Kutti, Tina; Mienis, Furu; Van Oevelen, Dick;ABSTRACTThe deep sea is amongst the most food‐limited habitats on Earth, as only a small fraction (<4%) of the surface primary production is exported below 200 m water depth. Here, cold‐water coral (CWC) reefs form oases of life: their biodiversity compares with tropical coral reefs, their biomass and metabolic activity exceed other deep‐sea ecosystems by far. We critically assess the paradox of thriving CWC reefs in the food‐limited deep sea, by reviewing the literature and open‐access data on CWC habitats. This review shows firstly that CWCs typically occur in areas where the food supply is not constantly low, but undergoes pronounced temporal variation. High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of surface organic matter to the seabed, creating ‘feast’ conditions, interspersed with ‘famine’ periods during the non‐productive season. Secondly, CWCs, particularly the most common reef‐builder Desmophyllum pertusum (formerly known as Lophelia pertusa), are well adapted to these fluctuations in food availability. Laboratory and in situ measurements revealed their dietary flexibility, tissue reserves, and temporal variation in growth and energy allocation. Thirdly, the high structural and functional diversity of CWC reefs increases resource retention: acting as giant filters and sustaining complex food webs with diverse recycling pathways, the reefs optimise resource gains over losses. Anthropogenic pressures, including climate change and ocean acidification, threaten this fragile equilibrium through decreased resource supply, increased energy costs, and dissolution of the calcium‐carbonate reef framework. Based on this review, we suggest additional criteria to judge the health of CWC reefs and their chance to persist in the future.
Biological Reviews arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Biological Reviews arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 NetherlandsPublisher:Frontiers Media SA Funded by:EC | ATLAS, UKRI | Impacts of ocean acidific..., NWO | Surviving in a Deep-Sea D... +1 projectsEC| ATLAS ,UKRI| Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles ,NWO| Surviving in a Deep-Sea Desert - Uncovering the Functioning of Cold-Water Coral Reefs in the Deep Ocean ,EC| iAtlanticAuthors: De Clippele, Laurence Helene; Anna-Selma Van Der Kaaden; Maier, Sandra Rosa; De Froe, Evert; +1 AuthorsDe Clippele, Laurence Helene; Anna-Selma Van Der Kaaden; Maier, Sandra Rosa; De Froe, Evert; J. Murray Roberts;This study used a novel approach combining biological, environmental, and ecosystem function data of the Logachev cold-water coral carbonate mound province to predictively map coral framework (bio)mass. A more accurate representation and quantification of cold-water coral reef ecosystem functions such as Carbon and Nitrogen stock and turnover were given by accounting for the spatial heterogeneity. Our results indicate that 45% is covered by dead and only 3% by live coral framework. The remaining 51%, is covered by fine sediments. It is estimated that 75,034–93,534 tons (T) of live coral framework is present in the area, of which ∼10% (7,747–9,316 T) consists of Cinorg and ∼1% (411–1,061 T) of Corg. A much larger amount of 3,485,828–4,357,435 T (60:1 dead:live ratio) dead coral framework contained ∼11% (418,299–522,892 T) Cinorg and <1% (0–16 T) Corg. The nutrient turnover by dead coral framework is the largest, contributing 45–51% (2,596–3,626 T) C year–1 and 30–62% (290–1,989 T) N year–1 to the total turnover in the area. Live coral framework turns over 1,656–2,828 T C year–1 and 53–286 T N year–1. Sediments contribute between 1,216–1,512 T C year–1 and 629–919 T N year–1 to the area’s benthic organic matter mineralization. However, this amount is likely higher as sediments baffled by coral framework might play a much more critical role in reefs CN cycling than previously assumed. Our calculations showed that the area overturns 1–3.4 times the C compared to a soft-sediment area at a similar depth. With only 5–9% of the primary productivity reaching the corals via natural deposition, this study indicated that the supply of food largely depends on local hydrodynamical food supply mechanisms and the reefs ability to retain and recycle nutrients. Climate-induced changes in primary production, local hydrodynamical food supply and the dissolution of particle-baffling coral framework could have severe implications for the survival and functioning of cold-water coral reefs.
Frontiers in Marine ... arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsFrontiers in Marine ScienceArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Frontiers in Marine ... arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsFrontiers in Marine ScienceArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Collection , Dataset , Other dataset type 2020Publisher:PANGAEA Funded by:EC | iAtlantic, EC | ATLASEC| iAtlantic ,EC| ATLASKazanidis, Georgios; Henry, Lea-Anne; Vad, Johanne; Johnson, Clare; De Clippele, Laurence Helene; Roberts, J Murray;The presence-absence data for macrobenthic fauna that has been collected in Mingulay Reef Complex (Scotland, UK) across 79 stations over the years 2003, 2005, 2009, 2010 and 2011. The collection of the benthic samples has been carried out using a Van-Veen grab, mainly from hard habitats (e.g. live and dead coral framework). About 60% of the macrofaunal specimens have been identified at species level using high quality taxonomic keys and advice from taxonomy experts. Most common taxonomic groups analysed here are molluscs, polychaetes, arthropods, bryozoans, anthozoans, tunicates and brachiopods. The collection of the specimens is now deposited at the National Museums of Scotland (see the attached excel file for details). The enviromental data contains information about coordinates and environmental settings at stations where macrobenthic samples mentioned above, were collected. The environmental settings that are included in the file refer to the years 2003, 2005, 2009, 2010, 2011. For more information on the environmental variables have a look in Henry et al. 2010 (doi:10.1007/s00338-009-0577-6) and Henry et al. 2013 (doi:10.5194/bg-10-2737-2013). The environmental variables included in the excel file are: type of macrohabitat (i.e. muddy sand, rubble, rock, live coral, dead framework, live & dead framework), depth (m), slope, ruggedness, broad-scale bathymetric position index, fine-scale bathymetric position index, average current speed (m/s), maximum current speed (m/s), northness, eastness, winter North Atlantic Oscillation Index (same year), winter North Atlantic Oscillation Index (previous year), annual average bottom temperature (same year), annual average bottom salinity (same year). Extraction of bathymetric (depth) and topographic data [slope, aspect, northness, eastness, ruggedness, standardised broad-scale bathymetric position index (BPI; with an inner radius of 1 cell and an outer radius of 5 cells), fine-scale BPI (with an inner radius of 1 cell and an outer radius of 3 cells)] was based on multibeam echosounder data, using the Spatial Analyst and Benthic Terrain Modeler toolboxes in ArcGIS v.10.6.1 Average and maximum current speed values (m/s) were extracted by the ArcGIS v. 10.6.1 Spatial Analyst toolbox using data generated by a high-resolution 3D ocean model created for the MRC by Moreno-Navas et al. (2014). Data for the winter NAOI (DJFM) (Hurrell et al., 2003) were downloaded from the National Center for Atmospheric Research/University Corporation for Atmospheric Research website (climatedataguide.ucar.edu; data accessed on 28/02/2019).
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Funded by:EC | iAtlanticEC| iAtlanticAuthors: De Clippele, Laurence Helene; Alonso Díaz, Laura; Andradi-Brown, Dominic A; Lazuardi, Muhammad Erdi; +8 AuthorsDe Clippele, Laurence Helene; Alonso Díaz, Laura; Andradi-Brown, Dominic A; Lazuardi, Muhammad Erdi; Iqbal, Mohamad; Zainudin, Imam Musthofa; Prabuning, Derta; van Hooidonk, Ruben; Hakim, Amehr; Agung, Firdaus; Dermawan, Agus; Hennige, Sebastian J;This shapefile/vector shows you the projected year beyond which a coral reef is expected to experience severe annual bleaching conditions, based on the reef being exposed to at least 8 Degree Heating Weeks (DHW). This vector allows you to identify which Indonesian MPAs might act as thermal refugia for coral reefs. Shapefile with the average year of onset of annual severe bleaching (ASB) events in all the marine protected areas (MPAs) of Indonesia designated in January 2020.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Funded by:EC | iAtlantic, EC | ATLASEC| iAtlantic ,EC| ATLASKazanidis, Georgios; Henry, Lea-Anne; Vad, Johanne; Johnson, Clare; De Clippele, Laurence Helene; Roberts, J Murray;I attach here 2 excel files: The 1st one is entitled "KAZANIDIS ET AL_ATLAS MINGULAY REEF COMPLEX_MACROBENTHOS DATA". This file contains a presence-absence matrix for macrobenthic fauna that has been collected in Mingulay Reef Complex (Scotland, UK) across 79 stations over the years 2003, 2005, 2009, 2010 and 2011. The 2nd one is entitled "KAZANIDIS ET AL_MINGULAY REEF COMPLEX_ENVIRONMENTAL DATA". This files contains information about coordinates and environmental settings at stations where macrobenthic samples mentioned above, were collected. Please mention that it is quite important that these two excel files stay together
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
Research data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Funded by:EC | iAtlantic, EC | ATLASEC| iAtlantic ,EC| ATLASKazanidis, Georgios; Henry, Lea-Anne; Vad, Johanne; Johnson, Clare; De Clippele, Laurence Helene; Roberts, J Murray;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 Norway, NetherlandsPublisher:Wiley Funded by:EC | ATLAS, EC | iAtlantic, NWO | Surviving in a Deep-Sea D...EC| ATLAS ,EC| iAtlantic ,NWO| Surviving in a Deep-Sea Desert - Uncovering the Functioning of Cold-Water Coral Reefs in the Deep OceanMaier, Sandra; Brooke, Sandra; De Clippelle, Laurence; De Froe, Evert; Van Der Kaaden, Anna-Selma; Kutti, Tina; Mienis, Furu; Van Oevelen, Dick;ABSTRACTThe deep sea is amongst the most food‐limited habitats on Earth, as only a small fraction (<4%) of the surface primary production is exported below 200 m water depth. Here, cold‐water coral (CWC) reefs form oases of life: their biodiversity compares with tropical coral reefs, their biomass and metabolic activity exceed other deep‐sea ecosystems by far. We critically assess the paradox of thriving CWC reefs in the food‐limited deep sea, by reviewing the literature and open‐access data on CWC habitats. This review shows firstly that CWCs typically occur in areas where the food supply is not constantly low, but undergoes pronounced temporal variation. High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of surface organic matter to the seabed, creating ‘feast’ conditions, interspersed with ‘famine’ periods during the non‐productive season. Secondly, CWCs, particularly the most common reef‐builder Desmophyllum pertusum (formerly known as Lophelia pertusa), are well adapted to these fluctuations in food availability. Laboratory and in situ measurements revealed their dietary flexibility, tissue reserves, and temporal variation in growth and energy allocation. Thirdly, the high structural and functional diversity of CWC reefs increases resource retention: acting as giant filters and sustaining complex food webs with diverse recycling pathways, the reefs optimise resource gains over losses. Anthropogenic pressures, including climate change and ocean acidification, threaten this fragile equilibrium through decreased resource supply, increased energy costs, and dissolution of the calcium‐carbonate reef framework. Based on this review, we suggest additional criteria to judge the health of CWC reefs and their chance to persist in the future.
Biological Reviews arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Biological Reviews arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 NetherlandsPublisher:Frontiers Media SA Funded by:EC | ATLAS, UKRI | Impacts of ocean acidific..., NWO | Surviving in a Deep-Sea D... +1 projectsEC| ATLAS ,UKRI| Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles ,NWO| Surviving in a Deep-Sea Desert - Uncovering the Functioning of Cold-Water Coral Reefs in the Deep Ocean ,EC| iAtlanticAuthors: De Clippele, Laurence Helene; Anna-Selma Van Der Kaaden; Maier, Sandra Rosa; De Froe, Evert; +1 AuthorsDe Clippele, Laurence Helene; Anna-Selma Van Der Kaaden; Maier, Sandra Rosa; De Froe, Evert; J. Murray Roberts;This study used a novel approach combining biological, environmental, and ecosystem function data of the Logachev cold-water coral carbonate mound province to predictively map coral framework (bio)mass. A more accurate representation and quantification of cold-water coral reef ecosystem functions such as Carbon and Nitrogen stock and turnover were given by accounting for the spatial heterogeneity. Our results indicate that 45% is covered by dead and only 3% by live coral framework. The remaining 51%, is covered by fine sediments. It is estimated that 75,034–93,534 tons (T) of live coral framework is present in the area, of which ∼10% (7,747–9,316 T) consists of Cinorg and ∼1% (411–1,061 T) of Corg. A much larger amount of 3,485,828–4,357,435 T (60:1 dead:live ratio) dead coral framework contained ∼11% (418,299–522,892 T) Cinorg and <1% (0–16 T) Corg. The nutrient turnover by dead coral framework is the largest, contributing 45–51% (2,596–3,626 T) C year–1 and 30–62% (290–1,989 T) N year–1 to the total turnover in the area. Live coral framework turns over 1,656–2,828 T C year–1 and 53–286 T N year–1. Sediments contribute between 1,216–1,512 T C year–1 and 629–919 T N year–1 to the area’s benthic organic matter mineralization. However, this amount is likely higher as sediments baffled by coral framework might play a much more critical role in reefs CN cycling than previously assumed. Our calculations showed that the area overturns 1–3.4 times the C compared to a soft-sediment area at a similar depth. With only 5–9% of the primary productivity reaching the corals via natural deposition, this study indicated that the supply of food largely depends on local hydrodynamical food supply mechanisms and the reefs ability to retain and recycle nutrients. Climate-induced changes in primary production, local hydrodynamical food supply and the dissolution of particle-baffling coral framework could have severe implications for the survival and functioning of cold-water coral reefs.
Frontiers in Marine ... arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsFrontiers in Marine ScienceArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Frontiers in Marine ... arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsFrontiers in Marine ScienceArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Collection , Dataset , Other dataset type 2020Publisher:PANGAEA Funded by:EC | iAtlantic, EC | ATLASEC| iAtlantic ,EC| ATLASKazanidis, Georgios; Henry, Lea-Anne; Vad, Johanne; Johnson, Clare; De Clippele, Laurence Helene; Roberts, J Murray;The presence-absence data for macrobenthic fauna that has been collected in Mingulay Reef Complex (Scotland, UK) across 79 stations over the years 2003, 2005, 2009, 2010 and 2011. The collection of the benthic samples has been carried out using a Van-Veen grab, mainly from hard habitats (e.g. live and dead coral framework). About 60% of the macrofaunal specimens have been identified at species level using high quality taxonomic keys and advice from taxonomy experts. Most common taxonomic groups analysed here are molluscs, polychaetes, arthropods, bryozoans, anthozoans, tunicates and brachiopods. The collection of the specimens is now deposited at the National Museums of Scotland (see the attached excel file for details). The enviromental data contains information about coordinates and environmental settings at stations where macrobenthic samples mentioned above, were collected. The environmental settings that are included in the file refer to the years 2003, 2005, 2009, 2010, 2011. For more information on the environmental variables have a look in Henry et al. 2010 (doi:10.1007/s00338-009-0577-6) and Henry et al. 2013 (doi:10.5194/bg-10-2737-2013). The environmental variables included in the excel file are: type of macrohabitat (i.e. muddy sand, rubble, rock, live coral, dead framework, live & dead framework), depth (m), slope, ruggedness, broad-scale bathymetric position index, fine-scale bathymetric position index, average current speed (m/s), maximum current speed (m/s), northness, eastness, winter North Atlantic Oscillation Index (same year), winter North Atlantic Oscillation Index (previous year), annual average bottom temperature (same year), annual average bottom salinity (same year). Extraction of bathymetric (depth) and topographic data [slope, aspect, northness, eastness, ruggedness, standardised broad-scale bathymetric position index (BPI; with an inner radius of 1 cell and an outer radius of 5 cells), fine-scale BPI (with an inner radius of 1 cell and an outer radius of 3 cells)] was based on multibeam echosounder data, using the Spatial Analyst and Benthic Terrain Modeler toolboxes in ArcGIS v.10.6.1 Average and maximum current speed values (m/s) were extracted by the ArcGIS v. 10.6.1 Spatial Analyst toolbox using data generated by a high-resolution 3D ocean model created for the MRC by Moreno-Navas et al. (2014). Data for the winter NAOI (DJFM) (Hurrell et al., 2003) were downloaded from the National Center for Atmospheric Research/University Corporation for Atmospheric Research website (climatedataguide.ucar.edu; data accessed on 28/02/2019).
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Funded by:EC | iAtlanticEC| iAtlanticAuthors: De Clippele, Laurence Helene; Alonso Díaz, Laura; Andradi-Brown, Dominic A; Lazuardi, Muhammad Erdi; +8 AuthorsDe Clippele, Laurence Helene; Alonso Díaz, Laura; Andradi-Brown, Dominic A; Lazuardi, Muhammad Erdi; Iqbal, Mohamad; Zainudin, Imam Musthofa; Prabuning, Derta; van Hooidonk, Ruben; Hakim, Amehr; Agung, Firdaus; Dermawan, Agus; Hennige, Sebastian J;This shapefile/vector shows you the projected year beyond which a coral reef is expected to experience severe annual bleaching conditions, based on the reef being exposed to at least 8 Degree Heating Weeks (DHW). This vector allows you to identify which Indonesian MPAs might act as thermal refugia for coral reefs. Shapefile with the average year of onset of annual severe bleaching (ASB) events in all the marine protected areas (MPAs) of Indonesia designated in January 2020.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Funded by:EC | iAtlantic, EC | ATLASEC| iAtlantic ,EC| ATLASKazanidis, Georgios; Henry, Lea-Anne; Vad, Johanne; Johnson, Clare; De Clippele, Laurence Helene; Roberts, J Murray;I attach here 2 excel files: The 1st one is entitled "KAZANIDIS ET AL_ATLAS MINGULAY REEF COMPLEX_MACROBENTHOS DATA". This file contains a presence-absence matrix for macrobenthic fauna that has been collected in Mingulay Reef Complex (Scotland, UK) across 79 stations over the years 2003, 2005, 2009, 2010 and 2011. The 2nd one is entitled "KAZANIDIS ET AL_MINGULAY REEF COMPLEX_ENVIRONMENTAL DATA". This files contains information about coordinates and environmental settings at stations where macrobenthic samples mentioned above, were collected. Please mention that it is quite important that these two excel files stay together
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
