- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, France, Germany, France, Netherlands, France, FrancePublisher:Springer Science and Business Media LLC Funded by:ANR | CLAND, EC | IMBALANCE-PANR| CLAND ,EC| IMBALANCE-PDaniel S. Goll; Jing Hu; Jing Hu; Dan Zhu; Yuanyuan Huang; Yuanyuan Huang; P. Ciais; Inge de Graaf; Inge de Graaf; Ying-Ping Wang; Jens Leifeld; Min Jung Kwon; Yiqi Luo; David Makowski; Laiye Qu; Bertrand Guenet; Chunjing Qiu;Water-table drawdown across peatlands increases carbon dioxide (CO2) and reduces methane (CH4) emissions. The net climatic effect remains unclear. Based on global observations from 130 sites, we found a positive (warming) net climate effect of water-table drawdown. Using a machine-learning-based upscaling approach, we predict that peatland water-table drawdown driven by climate drying and human activities will increase CO2 emissions by 1.13 (95% interval: 0.88–1.50) Gt yr−1 and reduce CH4 by 0.26 (0.14–0.52) GtCO2-eq yr−1, resulting in a net increase of greenhouse gas of 0.86 (0.36–1.36) GtCO2-eq yr−1 by the end of the twenty-first century under the RCP8.5 climate scenario. This drops to 0.73 (0.2–1.2) GtCO2-eq yr−1 under RCP2.6. Our results point to an urgent need to preserve pristine and rehabilitate drained peatlands to decelerate the positive feedback among water-table drawdown, increased greenhouse gas emissions and climate warming. The climate impact of water-table drawdown in peatlands is unclear as carbon dioxide emissions increase and methane emissions decrease due to drying. This study shows decreasing water-table depth results in net greenhouse gas emissions from global peatlands, despite reducing methane emissions.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03255991Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03255991Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01059-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03255991Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03255991Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01059-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Italy, Spain, SpainPublisher:Wiley Funded by:ANR | CLAND, ANR | ANAEE-FR, EC | HoliSoilsANR| CLAND ,ANR| ANAEE-FR ,EC| HoliSoilsBruni, Elisa; Chenu, Claire; Abramoff, Rose; Baldoni, Guido; Barkusky, Dietmar; Clivot, Hugues; Huang, Yuanyuan; Kätterer, Thomas; Pikuła, Dorota; Spiegel, Heide; Virto, Iñigo; Guenet, Bertrand;doi: 10.1111/ejss.13330
handle: 11585/912997
AbstractSoils store vast amounts of carbon (C) on land, and increasing soil organic carbon (SOC) stocks in already managed soils such as croplands may be one way to remove C from the atmosphere, thereby limiting subsequent warming. The main objective of this study was to estimate the amount of additional C input needed to annually increase SOC stocks by 4‰ at 16 long‐term agricultural experiments in Europe, including exogenous organic matter (EOM) additions. We used an ensemble of six SOC models and ran them under two configurations: (1) with default parametrization and (2) with parameters calibrated site‐by‐site to fit the evolution of SOC stocks in the control treatments (without EOM). We compared model simulations and analysed the factors generating variability across models. The calibrated ensemble was able to reproduce the SOC stock evolution in the unfertilised control treatments. We found that, on average, the experimental sites needed an additional 1.5 ± 1.2 Mg C ha−1 year−1 to increase SOC stocks by 4‰ per year over 30 years, compared to the C input in the control treatments (multi‐model median ± median standard deviation across sites). That is, a 119% increase compared to the control. While mean annual temperature, initial SOC stocks and initial C input had a significant effect on the variability of the predicted C input in the default configuration (i.e., the relative standard deviation of the predicted C input from the mean), only water‐related variables (i.e., mean annual precipitation and potential evapotranspiration) explained the divergence between models when calibrated. Our work highlights the challenge of increasing SOC stocks in agriculture and accentuates the need to increasingly lean on multi‐model ensembles when predicting SOC stock trends and related processes. To increase the reliability of SOC models under future climate change, we suggest model developers to better constrain the effect of water‐related variables on SOC decomposition.Highlights The feasibility of the 4‰ target was studied at 16 long‐term agricultural experiments. An ensemble of soil organic carbon models was used to estimate the uncertainty of the predictions. On average across the sites, carbon input had to increase by 119% compared to initial conditions. High uncertainty of the simulations was mainly driven by water‐related variables.
Archivio istituziona... arrow_drop_down Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejss.13330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio istituziona... arrow_drop_down Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejss.13330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, United Kingdom, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | HoliSoilsEC| HoliSoilsMartin, Philip; Fisher, Leonora; Pérez‐izquierdo, Leticia; Biryol, Charlotte; Guenet, Bertrand; Luyssaert, Sebastiaan; Manzoni, Stefano; Menival, Claire; Santonja, Mathieu; Spake, Rebecca; Axmacher, Jan; Yuste, Jorge;doi: 10.1111/gcb.17305 , 10.32942/x2xs5t
pmid: 38712651
AbstractAnthropogenic climate change is altering precipitation regimes at a global scale. While precipitation changes have been linked to changes in the abundance and diversity of soil and litter invertebrate fauna in forests, general trends have remained elusive due to mixed results from primary studies. We used a meta‐analysis based on 430 comparisons from 38 primary studies to address associated knowledge gaps, (i) quantifying impacts of precipitation change on forest soil and litter fauna abundance and diversity, (ii) exploring reasons for variation in impacts and (iii) examining biases affecting the realism and accuracy of experimental studies. Precipitation reductions led to a decrease of 39% in soil and litter fauna abundance, with a 35% increase in abundance under precipitation increases, while diversity impacts were smaller. A statistical model containing an interaction between body size and the magnitude of precipitation change showed that mesofauna (e.g. mites, collembola) responded most to changes in precipitation. Changes in taxonomic richness were related solely to the magnitude of precipitation change. Our results suggest that body size is related to the ability of a taxon to survive under drought conditions, or to benefit from high precipitation. We also found that most experiments manipulated precipitation in a way that aligns better with predicted extreme climatic events than with predicted average annual changes in precipitation and that the experimental plots used in experiments were likely too small to accurately capture changes for mobile taxa. The relationship between body size and response to precipitation found here has far‐reaching implications for our ability to predict future responses of soil biodiversity to climate change and will help to produce more realistic mechanistic soil models which aim to simulate the responses of soils to global change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, United Kingdom, Ireland, United Kingdom, United States, Germany, France, Ireland, United States, FinlandPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence..., EC | QUINCYARC| ARC Centres of Excellences - Grant ID: CE170100023 ,EC| QUINCYChristian Werner; Bertrand Guenet; Shinichi Asao; Jianyang Xia; Thomas Hickler; Colleen M. Iversen; Belinda E. Medlyn; J. Patrick Megonigal; Richard J. Norby; K. A. Luus; Yiqi Luo; Alan F. Talhelm; Anthony P. Walker; Meng Lu; Meng Lu; Bai Yang; Sönke Zaehle; Atul K. Jain; Ram Oren; Ram Oren; Xingjie Lu; Anna B. Harper; Martin G. De Kauwe; Ying-Ping Wang; Jeffrey M. Warren; Donald R. Zak; Shijie Shu; Edmund Ryan; Bruce A. Hungate;pmid: 30765702
pmc: PMC6376023
AbstractIncreasing atmospheric CO2 stimulates photosynthesis which can increase net primary production (NPP), but at longer timescales may not necessarily increase plant biomass. Here we analyse the four decade-long CO2-enrichment experiments in woody ecosystems that measured total NPP and biomass. CO2 enrichment increased biomass increment by 1.05 ± 0.26 kg C m−2 over a full decade, a 29.1 ± 11.7% stimulation of biomass gain in these early-secondary-succession temperate ecosystems. This response is predictable by combining the CO2 response of NPP (0.16 ± 0.03 kg C m−2 y−1) and the CO2-independent, linear slope between biomass increment and cumulative NPP (0.55 ± 0.17). An ensemble of terrestrial ecosystem models fail to predict both terms correctly. Allocation to wood was a driver of across-site, and across-model, response variability and together with CO2-independence of biomass retention highlights the value of understanding drivers of wood allocation under ambient conditions to correctly interpret and predict CO2 responses.
Hyper Article en Lig... arrow_drop_down Dublin Institute of Technology: ARROW@DIT (Archiving Research Resources on he Web)Article . 2019License: CC BYFull-Text: https://arrow.tudublin.ie/scschbioart/203Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39982Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02374049Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/5m5806shData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02374049Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiThe University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Duke University Libraries: DukeSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08348-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Dublin Institute of Technology: ARROW@DIT (Archiving Research Resources on he Web)Article . 2019License: CC BYFull-Text: https://arrow.tudublin.ie/scschbioart/203Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39982Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02374049Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/5m5806shData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02374049Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiThe University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Duke University Libraries: DukeSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08348-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint , Report 2021 France, GermanyPublisher:Copernicus GmbH Funded by:NSF | Collaborative Research on..., NSF | Collaborative Research: C..., NSERC +2 projectsNSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSERC ,DFG| Integrated Climate System Analysis and Prediction (CliSAP) ,EC| CRESCENDOPhilippe Peylin; Janina Klatt; Christophe Guimbaud; Annalea Lohila; Philippe Ciais; Eugénie S. Euskirchen; Fabrice Jégou; Housen Chu; Natalia Kowalska; Lutz Merbold; Mika Aurela; Vladislav Bastrikov; C. Edgar; Lawrence B. Flanagan; Line Jourdain; Sébastien Gogo; Elodie Salmon; Bogdan H. Chojnicki; Lars Kutzbach; Klaudia Ziemblińska; Dan Zhu; Dan Zhu; M. Syndonia Bret-Harte; Fatima Laggoun-Défarge; Krzysztof Fortuniak; Torsten Sachs; David Holl; Bertrand Guenet; Bertrand Guenet; Olaf Kolle; Włodzimierz Pawlak; Jiquan Chen; Chunjing Qiu;Abstract. In the global methane budget, the largest natural source is attributed to wetlands, which encompass all ecosystems composed of waterlogged or inundated ground, capable of methane production. Among them, northern peatlands that store large amounts of soil organic carbon have been functioning, since the end of the last glaciation period, as long-term sources of methane (CH4) and are one of the most significant methane sources among wetlands. To reduce uncertainty of quantifying methane flux in the global methane budget, it is of significance to understand the underlying processes for methane production and fluxes in northern peatlands. A methane model that features methane production and transport by plants, ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model that includes an explicit representation of northern peatlands. ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributed on both the Eurasian and American continents in the northern boreal and temperate regions. Data assimilation approaches were employed to optimized parameters at each site and at all sites simultaneously. Results show that methanogenesis is sensitive to temperature and substrate availability over the top 75 cm of soil depth. Methane emissions estimated using single site optimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 yr−1 on average (i.e., 50 % higher than the site average of yearly methane emissions). While using the multi-site optimization (MSO), methane emissions are overestimated by 5 g CH4 m−2 yr−1 on average across all investigated sites (i.e., 37 % lower than the site average of yearly methane emissions).
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesInstitut National de la Recherche Agronomique: ProdINRAReport . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-15-2813-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesInstitut National de la Recherche Agronomique: ProdINRAReport . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-15-2813-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Springer Science and Business Media LLC Funded by:ANR | CLANDANR| CLANDCélia Ruau; Victoria Naipal; Nathalie Gagnaire; Carlos Cantero-Martinez; Bertrand Guenet; Benoit Gabrielle;Soil erosion poses a significant threat to agricultural production worldwide, with a still-debated impact on the current increase in atmospheric CO2. Whether erosion acts as a net carbon (C) source or sink also depends on how it influences greenhouse gas (GHG) emissions via its impact on crop yield and nutrient loss. These effects on the environmental impacts of crops remain to be considered. To fill this gap, we combined watershed-scale erosion modeling with life cycle assessment to evaluate the influence of soil erosion on environmental impacts of wheat production in the Ebro River basin in Spain. This study is the very first to address the full GHG balance of erosion including its impact on soil fertility and its feedback on crop yields. Two scenarios were simulated from 1860 to 2005: an eroded basin involving conventional agricultural practices, and a non-eroded basin involving conservation practices such as no-till. Life cycle assessment followed a cradle-to-farm-gate approach with a focus on recent decades (1985–2005). The mean simulated soil erosion of the eroded basin was 2.6 t ha−1 year−1 compared to the non-eroded basin. Simulated soils in both eroded and non-eroded basins lost organic C over time, with the former emitting an additional 55 kg CO2 ha−1 year−1. This net C source represented only 3% of the overall life cycle GHG emissions of wheat grain, while the emissions related to the increase of fertilizer inputs to compensate for N and P losses contributed a similar percentage. Wheat yield was the most influential parameter, being up to 61% higher when implementing conservation practices. Even at the basin scale, erosion did not emerge as a net C sink and increased GHG emissions of wheat by 7–70%. Nonetheless, controlling erosion through soil conservation practices is strongly recommended to preserve soils, increase crop yields, and mitigate GHG emissions.
HAL-CEA arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Agronomy for Sustainable DevelopmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-023-00942-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert HAL-CEA arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Agronomy for Sustainable DevelopmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-023-00942-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:IOP Publishing Funded by:ANR | CLAND, EC | CRESCENDOANR| CLAND ,EC| CRESCENDOIto, Akihiko; Hajima, Tomohiro; Lawrence, David M.; Brovkin, Victor; Delire, Christine; Guenet, Bertrand; Jones, Chris D.; Malyshev, Sergey L.; Materia, Stefano; Mcdermid, Sonali Shukla; Peano, Daniele; Pongratz, Julia; Robertson, Eddy S.; Shevliakova, Elena; Vuichard, Nicolas; Wårlind, David; Wiltshire, Andy J.; Ziehn, Tilo;Abstract Land-use change affects both the quality and quantity of soil organic carbon (SOC) and leads to changes in ecosystem functions such as productivity and environmental regulation. Future changes in SOC are, however, highly uncertain owing to its heterogeneity and complexity. In this study, we analyzed the outputs of simulations of SOC stock by Earth system models (ESMs), most of which are participants in the Land-Use Model Intercomparison Project. Using a common protocol and the same forcing data, the ESMs simulated SOC distribution patterns and their changes during historical (1850–2014) and future (2015–2100) periods. Total SOC stock increased in many simulations over the historical period (30 ± 67 Pg C) and under future climate and land-use conditions (48 ± 32 Pg C for ssp126 and 49 ± 58 Pg C for ssp370). Land-use experiments indicated that changes in SOC attributable to land-use scenarios were modest at the global scale, in comparison with climatic and rising CO2 impacts, but they were notable in several regions. Future net soil carbon sequestration rates estimated by the ESMs were roughly 0.4‰ yr−1 (0.6 Pg C yr−1). Although there were considerable inter-model differences, the rates are still remarkable in terms of their potential for mitigation of global warming. The disparate results among ESMs imply that key parameters that control processes such as SOC residence time need to be better constrained and that more comprehensive representation of land management impacts on soils remain critical for understanding the long-term potential of soils to sequester carbon.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03109220Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03109220Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abc912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03109220Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03109220Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abc912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-P, UKRI | Soils Research to deliver..., UKRI | U-Grass: Understanding an... +2 projectsEC| IMBALANCE-P ,UKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplands ,EC| VERIFY ,UKRI| Delivering Food Security on Limited Land (DEVIL)Jinfeng Chang; Philippe Ciais; Thomas Gasser; Pete Smith; Mario Herrero; Petr Havlík; Michael Obersteiner; Bertrand Guenet; Daniel Goll; Wei Li; Victoria Naipal; Shushi Peng; Chunjing Qiu; Hanqin Tian; Nicolas Viovy; Chao Ye; Dan Zhu;pmid: 33402687
pmc: PMC7785734
AbstractGrasslands absorb and release carbon dioxide (CO2), emit methane (CH4) from grazing livestock, and emit nitrous oxide (N2O) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012. A new spatially explicit land surface model is applied, to separate the direct effects of human activities from land management and the indirect effects from climate change, increasing CO2 and regional changes in nitrogen deposition. Direct human management activities are simulated to have caused grasslands to switch from a sink to a source of greenhouse gas, because of increased livestock numbers and accelerated conversion of natural lands to pasture. However, climate change drivers contributed a net carbon sink in soil organic matter, mainly from the increased productivity of grasslands due to increased CO2 and nitrogen deposition. The net radiative forcing of all grasslands is currently close to neutral, but has been increasing since the 1960s. Here, we show that the net global climate warming caused by managed grassland cancels the net climate cooling from carbon sinks in sparsely grazed and natural grasslands. In the face of future climate change and increased demand for livestock products, these findings highlight the need to use sustainable management to preserve and enhance soil carbon storage in grasslands and to reduce greenhouse gas emissions from managed grasslands.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, Austria, Austria, Belgium, United States, SpainPublisher:Elsevier BV Funded by:EC | IMBALANCE-PEC| IMBALANCE-PBertrand Guenet; Josep Peñuelas; M. Francesca Cotrufo; Ivan A. Janssens; Samuel Bodé; Sara Marañón-Jiménez; Sara Marañón-Jiménez; Sara Marañón-Jiménez; Jennifer L. Soong; Jennifer L. Soong; Pascal Boeckx; Andreas Richter; Erik Verbruggen; Clément Stahl;handle: 10067/1519530151162165141
Soil nutrient availability has a strong influence on the fate of soil carbon (C) during microbial decomposition, contributing to Earth's C balance. While nutrient availability itself can impact microbial physiology and C partitioning between biomass and respiration during soil organic matter decomposition, the availability of labile C inputs may mediate the response of microorganisms to nutrient additions. As soil organic matter is decomposed, microorganisms retain or release C, nitrogen (N) or phosphorus (P) to maintain a stoichiometric balance. Although the concept of a microbial stoichiometric homeostasis has previously been proposed, microbial biomass CNP ratios are not static, and this may have very relevant implications for microbial physiological activities. Here, we tested the hypothesis that N, P and potassium (K) nutrient additions impact C cycling in a tropical soil due to microbial stoichiometric constraints to growth and respiration, and that the availability of energy-rich labile organic matter in the soil (i.e. leaf litter) mediates the response to nutrient addition. We incubated tropical soil from French Guiana with a ¹³C labeled leaf litter addition and with mineral nutrient additions of +K, +N, +NK, +PK and +NPK for 30 days. We found that litter additions led to a ten-fold increase in microbial respiration and a doubling of microbial biomass C, along with greater microbial N and P content. We found some evidence that P additions increased soil CO² fluxes. Additionally, we found microbial biomass CP and NP ratios varied more widely than CN in response to nutrient and organic matter additions, with important implications for the role of microorganisms in C cycling. The addition of litter did not prime soil organic matter decomposition, except in combination with +NK fertilization, indicating possible P-mining of soil organic matter in this P-poor tropical soil. Together, these results point toward an ultimate labile organic substrate limitation of soil microorganisms in this tropical soil, but also indicate a complex interaction between C, N, P and K availability. This highlights the difference between microbial C cycling responses to N, P, or K additions in the tropics and explains why coupled C, N and P cycling modeling efforts cannot rely on strict microbial stoichiometric homeostasis as an underlying assumption.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/1vg9s78kData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BY NC NDData sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1016/j.so...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2018.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/1vg9s78kData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BY NC NDData sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1016/j.so...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2018.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 Belgium, FrancePublisher:Copernicus GmbH Funded by:EC | IMBALANCE-P, EC | C-CASCADESEC| IMBALANCE-P ,EC| C-CASCADESChunjing Qiu; Dan Zhu; Philippe Ciais; Bertrand Guenet; Shushi Peng; Gerhard Krinner; Ardalan Tootchi; Agnès Ducharne; Adam Hastie;Abstract. The importance of northern peatlands in the global carbon cycle has recently been recognized, especially for long-term changes. Yet, the complex interactions between climate and peatland hydrology, carbon storage and area dynamics make it challenging to represent these systems in land surface models. This study describes how peatland are included as an independent sub-grid hydrological soil unit (HSU) into the ORCHIDEE-MICT land surface model. The peatland soil column in this tile is characterized by multi-layered vertical water and carbon transport, and peat-specific hydrological properties. A cost-efficient TOPMODEL approach is implemented to simulate the dynamics of peatland area, calibrated by present-day wetland areas that are regularly inundated or subject to shallow water tables. The model is tested across a range of northern peatland sites and for gridded simulations over the Northern Hemisphere (> 30° N). Simulated northern peatland area (3.9 million km2), peat carbon stock (463 PgC) and peat depth are generally consistent with observed estimates of peatland area (3.4–4.0 million km2), peat carbon (270–540 PgC) and data compilations of peat core depths. Our results show that both net primary production (NPP) and heterotrophic respiration (HR) of northern peatlands increased over the past century in response to CO2 and climate change. NPP increased more rapidly than HR, and thus net ecosystem production (NEP) exhibited a positive trend, contributing a cumulative carbon storage of 11.13 Pg C since 1901, most of it being realized after the 1950s.
Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2018-256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2018-256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, France, Germany, France, Netherlands, France, FrancePublisher:Springer Science and Business Media LLC Funded by:ANR | CLAND, EC | IMBALANCE-PANR| CLAND ,EC| IMBALANCE-PDaniel S. Goll; Jing Hu; Jing Hu; Dan Zhu; Yuanyuan Huang; Yuanyuan Huang; P. Ciais; Inge de Graaf; Inge de Graaf; Ying-Ping Wang; Jens Leifeld; Min Jung Kwon; Yiqi Luo; David Makowski; Laiye Qu; Bertrand Guenet; Chunjing Qiu;Water-table drawdown across peatlands increases carbon dioxide (CO2) and reduces methane (CH4) emissions. The net climatic effect remains unclear. Based on global observations from 130 sites, we found a positive (warming) net climate effect of water-table drawdown. Using a machine-learning-based upscaling approach, we predict that peatland water-table drawdown driven by climate drying and human activities will increase CO2 emissions by 1.13 (95% interval: 0.88–1.50) Gt yr−1 and reduce CH4 by 0.26 (0.14–0.52) GtCO2-eq yr−1, resulting in a net increase of greenhouse gas of 0.86 (0.36–1.36) GtCO2-eq yr−1 by the end of the twenty-first century under the RCP8.5 climate scenario. This drops to 0.73 (0.2–1.2) GtCO2-eq yr−1 under RCP2.6. Our results point to an urgent need to preserve pristine and rehabilitate drained peatlands to decelerate the positive feedback among water-table drawdown, increased greenhouse gas emissions and climate warming. The climate impact of water-table drawdown in peatlands is unclear as carbon dioxide emissions increase and methane emissions decrease due to drying. This study shows decreasing water-table depth results in net greenhouse gas emissions from global peatlands, despite reducing methane emissions.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03255991Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03255991Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01059-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03255991Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03255991Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01059-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Italy, Spain, SpainPublisher:Wiley Funded by:ANR | CLAND, ANR | ANAEE-FR, EC | HoliSoilsANR| CLAND ,ANR| ANAEE-FR ,EC| HoliSoilsBruni, Elisa; Chenu, Claire; Abramoff, Rose; Baldoni, Guido; Barkusky, Dietmar; Clivot, Hugues; Huang, Yuanyuan; Kätterer, Thomas; Pikuła, Dorota; Spiegel, Heide; Virto, Iñigo; Guenet, Bertrand;doi: 10.1111/ejss.13330
handle: 11585/912997
AbstractSoils store vast amounts of carbon (C) on land, and increasing soil organic carbon (SOC) stocks in already managed soils such as croplands may be one way to remove C from the atmosphere, thereby limiting subsequent warming. The main objective of this study was to estimate the amount of additional C input needed to annually increase SOC stocks by 4‰ at 16 long‐term agricultural experiments in Europe, including exogenous organic matter (EOM) additions. We used an ensemble of six SOC models and ran them under two configurations: (1) with default parametrization and (2) with parameters calibrated site‐by‐site to fit the evolution of SOC stocks in the control treatments (without EOM). We compared model simulations and analysed the factors generating variability across models. The calibrated ensemble was able to reproduce the SOC stock evolution in the unfertilised control treatments. We found that, on average, the experimental sites needed an additional 1.5 ± 1.2 Mg C ha−1 year−1 to increase SOC stocks by 4‰ per year over 30 years, compared to the C input in the control treatments (multi‐model median ± median standard deviation across sites). That is, a 119% increase compared to the control. While mean annual temperature, initial SOC stocks and initial C input had a significant effect on the variability of the predicted C input in the default configuration (i.e., the relative standard deviation of the predicted C input from the mean), only water‐related variables (i.e., mean annual precipitation and potential evapotranspiration) explained the divergence between models when calibrated. Our work highlights the challenge of increasing SOC stocks in agriculture and accentuates the need to increasingly lean on multi‐model ensembles when predicting SOC stock trends and related processes. To increase the reliability of SOC models under future climate change, we suggest model developers to better constrain the effect of water‐related variables on SOC decomposition.Highlights The feasibility of the 4‰ target was studied at 16 long‐term agricultural experiments. An ensemble of soil organic carbon models was used to estimate the uncertainty of the predictions. On average across the sites, carbon input had to increase by 119% compared to initial conditions. High uncertainty of the simulations was mainly driven by water‐related variables.
Archivio istituziona... arrow_drop_down Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejss.13330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio istituziona... arrow_drop_down Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03918024Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejss.13330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, United Kingdom, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | HoliSoilsEC| HoliSoilsMartin, Philip; Fisher, Leonora; Pérez‐izquierdo, Leticia; Biryol, Charlotte; Guenet, Bertrand; Luyssaert, Sebastiaan; Manzoni, Stefano; Menival, Claire; Santonja, Mathieu; Spake, Rebecca; Axmacher, Jan; Yuste, Jorge;doi: 10.1111/gcb.17305 , 10.32942/x2xs5t
pmid: 38712651
AbstractAnthropogenic climate change is altering precipitation regimes at a global scale. While precipitation changes have been linked to changes in the abundance and diversity of soil and litter invertebrate fauna in forests, general trends have remained elusive due to mixed results from primary studies. We used a meta‐analysis based on 430 comparisons from 38 primary studies to address associated knowledge gaps, (i) quantifying impacts of precipitation change on forest soil and litter fauna abundance and diversity, (ii) exploring reasons for variation in impacts and (iii) examining biases affecting the realism and accuracy of experimental studies. Precipitation reductions led to a decrease of 39% in soil and litter fauna abundance, with a 35% increase in abundance under precipitation increases, while diversity impacts were smaller. A statistical model containing an interaction between body size and the magnitude of precipitation change showed that mesofauna (e.g. mites, collembola) responded most to changes in precipitation. Changes in taxonomic richness were related solely to the magnitude of precipitation change. Our results suggest that body size is related to the ability of a taxon to survive under drought conditions, or to benefit from high precipitation. We also found that most experiments manipulated precipitation in a way that aligns better with predicted extreme climatic events than with predicted average annual changes in precipitation and that the experimental plots used in experiments were likely too small to accurately capture changes for mobile taxa. The relationship between body size and response to precipitation found here has far‐reaching implications for our ability to predict future responses of soil biodiversity to climate change and will help to produce more realistic mechanistic soil models which aim to simulate the responses of soils to global change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, United Kingdom, Ireland, United Kingdom, United States, Germany, France, Ireland, United States, FinlandPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence..., EC | QUINCYARC| ARC Centres of Excellences - Grant ID: CE170100023 ,EC| QUINCYChristian Werner; Bertrand Guenet; Shinichi Asao; Jianyang Xia; Thomas Hickler; Colleen M. Iversen; Belinda E. Medlyn; J. Patrick Megonigal; Richard J. Norby; K. A. Luus; Yiqi Luo; Alan F. Talhelm; Anthony P. Walker; Meng Lu; Meng Lu; Bai Yang; Sönke Zaehle; Atul K. Jain; Ram Oren; Ram Oren; Xingjie Lu; Anna B. Harper; Martin G. De Kauwe; Ying-Ping Wang; Jeffrey M. Warren; Donald R. Zak; Shijie Shu; Edmund Ryan; Bruce A. Hungate;pmid: 30765702
pmc: PMC6376023
AbstractIncreasing atmospheric CO2 stimulates photosynthesis which can increase net primary production (NPP), but at longer timescales may not necessarily increase plant biomass. Here we analyse the four decade-long CO2-enrichment experiments in woody ecosystems that measured total NPP and biomass. CO2 enrichment increased biomass increment by 1.05 ± 0.26 kg C m−2 over a full decade, a 29.1 ± 11.7% stimulation of biomass gain in these early-secondary-succession temperate ecosystems. This response is predictable by combining the CO2 response of NPP (0.16 ± 0.03 kg C m−2 y−1) and the CO2-independent, linear slope between biomass increment and cumulative NPP (0.55 ± 0.17). An ensemble of terrestrial ecosystem models fail to predict both terms correctly. Allocation to wood was a driver of across-site, and across-model, response variability and together with CO2-independence of biomass retention highlights the value of understanding drivers of wood allocation under ambient conditions to correctly interpret and predict CO2 responses.
Hyper Article en Lig... arrow_drop_down Dublin Institute of Technology: ARROW@DIT (Archiving Research Resources on he Web)Article . 2019License: CC BYFull-Text: https://arrow.tudublin.ie/scschbioart/203Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39982Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02374049Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/5m5806shData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02374049Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiThe University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Duke University Libraries: DukeSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08348-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Dublin Institute of Technology: ARROW@DIT (Archiving Research Resources on he Web)Article . 2019License: CC BYFull-Text: https://arrow.tudublin.ie/scschbioart/203Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39982Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02374049Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/5m5806shData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02374049Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiThe University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Duke University Libraries: DukeSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08348-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint , Report 2021 France, GermanyPublisher:Copernicus GmbH Funded by:NSF | Collaborative Research on..., NSF | Collaborative Research: C..., NSERC +2 projectsNSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSERC ,DFG| Integrated Climate System Analysis and Prediction (CliSAP) ,EC| CRESCENDOPhilippe Peylin; Janina Klatt; Christophe Guimbaud; Annalea Lohila; Philippe Ciais; Eugénie S. Euskirchen; Fabrice Jégou; Housen Chu; Natalia Kowalska; Lutz Merbold; Mika Aurela; Vladislav Bastrikov; C. Edgar; Lawrence B. Flanagan; Line Jourdain; Sébastien Gogo; Elodie Salmon; Bogdan H. Chojnicki; Lars Kutzbach; Klaudia Ziemblińska; Dan Zhu; Dan Zhu; M. Syndonia Bret-Harte; Fatima Laggoun-Défarge; Krzysztof Fortuniak; Torsten Sachs; David Holl; Bertrand Guenet; Bertrand Guenet; Olaf Kolle; Włodzimierz Pawlak; Jiquan Chen; Chunjing Qiu;Abstract. In the global methane budget, the largest natural source is attributed to wetlands, which encompass all ecosystems composed of waterlogged or inundated ground, capable of methane production. Among them, northern peatlands that store large amounts of soil organic carbon have been functioning, since the end of the last glaciation period, as long-term sources of methane (CH4) and are one of the most significant methane sources among wetlands. To reduce uncertainty of quantifying methane flux in the global methane budget, it is of significance to understand the underlying processes for methane production and fluxes in northern peatlands. A methane model that features methane production and transport by plants, ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model that includes an explicit representation of northern peatlands. ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributed on both the Eurasian and American continents in the northern boreal and temperate regions. Data assimilation approaches were employed to optimized parameters at each site and at all sites simultaneously. Results show that methanogenesis is sensitive to temperature and substrate availability over the top 75 cm of soil depth. Methane emissions estimated using single site optimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 yr−1 on average (i.e., 50 % higher than the site average of yearly methane emissions). While using the multi-site optimization (MSO), methane emissions are overestimated by 5 g CH4 m−2 yr−1 on average across all investigated sites (i.e., 37 % lower than the site average of yearly methane emissions).
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesInstitut National de la Recherche Agronomique: ProdINRAReport . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-15-2813-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesInstitut National de la Recherche Agronomique: ProdINRAReport . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-15-2813-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Springer Science and Business Media LLC Funded by:ANR | CLANDANR| CLANDCélia Ruau; Victoria Naipal; Nathalie Gagnaire; Carlos Cantero-Martinez; Bertrand Guenet; Benoit Gabrielle;Soil erosion poses a significant threat to agricultural production worldwide, with a still-debated impact on the current increase in atmospheric CO2. Whether erosion acts as a net carbon (C) source or sink also depends on how it influences greenhouse gas (GHG) emissions via its impact on crop yield and nutrient loss. These effects on the environmental impacts of crops remain to be considered. To fill this gap, we combined watershed-scale erosion modeling with life cycle assessment to evaluate the influence of soil erosion on environmental impacts of wheat production in the Ebro River basin in Spain. This study is the very first to address the full GHG balance of erosion including its impact on soil fertility and its feedback on crop yields. Two scenarios were simulated from 1860 to 2005: an eroded basin involving conventional agricultural practices, and a non-eroded basin involving conservation practices such as no-till. Life cycle assessment followed a cradle-to-farm-gate approach with a focus on recent decades (1985–2005). The mean simulated soil erosion of the eroded basin was 2.6 t ha−1 year−1 compared to the non-eroded basin. Simulated soils in both eroded and non-eroded basins lost organic C over time, with the former emitting an additional 55 kg CO2 ha−1 year−1. This net C source represented only 3% of the overall life cycle GHG emissions of wheat grain, while the emissions related to the increase of fertilizer inputs to compensate for N and P losses contributed a similar percentage. Wheat yield was the most influential parameter, being up to 61% higher when implementing conservation practices. Even at the basin scale, erosion did not emerge as a net C sink and increased GHG emissions of wheat by 7–70%. Nonetheless, controlling erosion through soil conservation practices is strongly recommended to preserve soils, increase crop yields, and mitigate GHG emissions.
HAL-CEA arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Agronomy for Sustainable DevelopmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-023-00942-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert HAL-CEA arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Agronomy for Sustainable DevelopmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-023-00942-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:IOP Publishing Funded by:ANR | CLAND, EC | CRESCENDOANR| CLAND ,EC| CRESCENDOIto, Akihiko; Hajima, Tomohiro; Lawrence, David M.; Brovkin, Victor; Delire, Christine; Guenet, Bertrand; Jones, Chris D.; Malyshev, Sergey L.; Materia, Stefano; Mcdermid, Sonali Shukla; Peano, Daniele; Pongratz, Julia; Robertson, Eddy S.; Shevliakova, Elena; Vuichard, Nicolas; Wårlind, David; Wiltshire, Andy J.; Ziehn, Tilo;Abstract Land-use change affects both the quality and quantity of soil organic carbon (SOC) and leads to changes in ecosystem functions such as productivity and environmental regulation. Future changes in SOC are, however, highly uncertain owing to its heterogeneity and complexity. In this study, we analyzed the outputs of simulations of SOC stock by Earth system models (ESMs), most of which are participants in the Land-Use Model Intercomparison Project. Using a common protocol and the same forcing data, the ESMs simulated SOC distribution patterns and their changes during historical (1850–2014) and future (2015–2100) periods. Total SOC stock increased in many simulations over the historical period (30 ± 67 Pg C) and under future climate and land-use conditions (48 ± 32 Pg C for ssp126 and 49 ± 58 Pg C for ssp370). Land-use experiments indicated that changes in SOC attributable to land-use scenarios were modest at the global scale, in comparison with climatic and rising CO2 impacts, but they were notable in several regions. Future net soil carbon sequestration rates estimated by the ESMs were roughly 0.4‰ yr−1 (0.6 Pg C yr−1). Although there were considerable inter-model differences, the rates are still remarkable in terms of their potential for mitigation of global warming. The disparate results among ESMs imply that key parameters that control processes such as SOC residence time need to be better constrained and that more comprehensive representation of land management impacts on soils remain critical for understanding the long-term potential of soils to sequester carbon.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03109220Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03109220Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abc912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03109220Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03109220Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abc912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-P, UKRI | Soils Research to deliver..., UKRI | U-Grass: Understanding an... +2 projectsEC| IMBALANCE-P ,UKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplands ,EC| VERIFY ,UKRI| Delivering Food Security on Limited Land (DEVIL)Jinfeng Chang; Philippe Ciais; Thomas Gasser; Pete Smith; Mario Herrero; Petr Havlík; Michael Obersteiner; Bertrand Guenet; Daniel Goll; Wei Li; Victoria Naipal; Shushi Peng; Chunjing Qiu; Hanqin Tian; Nicolas Viovy; Chao Ye; Dan Zhu;pmid: 33402687
pmc: PMC7785734
AbstractGrasslands absorb and release carbon dioxide (CO2), emit methane (CH4) from grazing livestock, and emit nitrous oxide (N2O) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012. A new spatially explicit land surface model is applied, to separate the direct effects of human activities from land management and the indirect effects from climate change, increasing CO2 and regional changes in nitrogen deposition. Direct human management activities are simulated to have caused grasslands to switch from a sink to a source of greenhouse gas, because of increased livestock numbers and accelerated conversion of natural lands to pasture. However, climate change drivers contributed a net carbon sink in soil organic matter, mainly from the increased productivity of grasslands due to increased CO2 and nitrogen deposition. The net radiative forcing of all grasslands is currently close to neutral, but has been increasing since the 1960s. Here, we show that the net global climate warming caused by managed grassland cancels the net climate cooling from carbon sinks in sparsely grazed and natural grasslands. In the face of future climate change and increased demand for livestock products, these findings highlight the need to use sustainable management to preserve and enhance soil carbon storage in grasslands and to reduce greenhouse gas emissions from managed grasslands.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, Austria, Austria, Belgium, United States, SpainPublisher:Elsevier BV Funded by:EC | IMBALANCE-PEC| IMBALANCE-PBertrand Guenet; Josep Peñuelas; M. Francesca Cotrufo; Ivan A. Janssens; Samuel Bodé; Sara Marañón-Jiménez; Sara Marañón-Jiménez; Sara Marañón-Jiménez; Jennifer L. Soong; Jennifer L. Soong; Pascal Boeckx; Andreas Richter; Erik Verbruggen; Clément Stahl;handle: 10067/1519530151162165141
Soil nutrient availability has a strong influence on the fate of soil carbon (C) during microbial decomposition, contributing to Earth's C balance. While nutrient availability itself can impact microbial physiology and C partitioning between biomass and respiration during soil organic matter decomposition, the availability of labile C inputs may mediate the response of microorganisms to nutrient additions. As soil organic matter is decomposed, microorganisms retain or release C, nitrogen (N) or phosphorus (P) to maintain a stoichiometric balance. Although the concept of a microbial stoichiometric homeostasis has previously been proposed, microbial biomass CNP ratios are not static, and this may have very relevant implications for microbial physiological activities. Here, we tested the hypothesis that N, P and potassium (K) nutrient additions impact C cycling in a tropical soil due to microbial stoichiometric constraints to growth and respiration, and that the availability of energy-rich labile organic matter in the soil (i.e. leaf litter) mediates the response to nutrient addition. We incubated tropical soil from French Guiana with a ¹³C labeled leaf litter addition and with mineral nutrient additions of +K, +N, +NK, +PK and +NPK for 30 days. We found that litter additions led to a ten-fold increase in microbial respiration and a doubling of microbial biomass C, along with greater microbial N and P content. We found some evidence that P additions increased soil CO² fluxes. Additionally, we found microbial biomass CP and NP ratios varied more widely than CN in response to nutrient and organic matter additions, with important implications for the role of microorganisms in C cycling. The addition of litter did not prime soil organic matter decomposition, except in combination with +NK fertilization, indicating possible P-mining of soil organic matter in this P-poor tropical soil. Together, these results point toward an ultimate labile organic substrate limitation of soil microorganisms in this tropical soil, but also indicate a complex interaction between C, N, P and K availability. This highlights the difference between microbial C cycling responses to N, P, or K additions in the tropics and explains why coupled C, N and P cycling modeling efforts cannot rely on strict microbial stoichiometric homeostasis as an underlying assumption.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/1vg9s78kData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BY NC NDData sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1016/j.so...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2018.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/1vg9s78kData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02374054Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BY NC NDData sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1016/j.so...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2018.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 Belgium, FrancePublisher:Copernicus GmbH Funded by:EC | IMBALANCE-P, EC | C-CASCADESEC| IMBALANCE-P ,EC| C-CASCADESChunjing Qiu; Dan Zhu; Philippe Ciais; Bertrand Guenet; Shushi Peng; Gerhard Krinner; Ardalan Tootchi; Agnès Ducharne; Adam Hastie;Abstract. The importance of northern peatlands in the global carbon cycle has recently been recognized, especially for long-term changes. Yet, the complex interactions between climate and peatland hydrology, carbon storage and area dynamics make it challenging to represent these systems in land surface models. This study describes how peatland are included as an independent sub-grid hydrological soil unit (HSU) into the ORCHIDEE-MICT land surface model. The peatland soil column in this tile is characterized by multi-layered vertical water and carbon transport, and peat-specific hydrological properties. A cost-efficient TOPMODEL approach is implemented to simulate the dynamics of peatland area, calibrated by present-day wetland areas that are regularly inundated or subject to shallow water tables. The model is tested across a range of northern peatland sites and for gridded simulations over the Northern Hemisphere (> 30° N). Simulated northern peatland area (3.9 million km2), peat carbon stock (463 PgC) and peat depth are generally consistent with observed estimates of peatland area (3.4–4.0 million km2), peat carbon (270–540 PgC) and data compilations of peat core depths. Our results show that both net primary production (NPP) and heterotrophic respiration (HR) of northern peatlands increased over the past century in response to CO2 and climate change. NPP increased more rapidly than HR, and thus net ecosystem production (NEP) exhibited a positive trend, contributing a cumulative carbon storage of 11.13 Pg C since 1901, most of it being realized after the 1950s.
Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2018-256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02332525Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2018-256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu