Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Country
  • Language
  • Source
  • Research community
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; +5 Authors

    Climatic niche evolution of disease-causing pathogens driving amphibian declines

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility5
    visibilityviews5
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; +5 Authors

    Climate change, along with infectious diseasespathogens notably Batrachochytrium dendrobatidis (Bd), B. salamandrivorans (Bsal), Ranavirus, and PerkinseaPerkinsus, continue to devastate global amphibian populations, contributing to the greatest vertebrate extinctions of the Anthropocene. These pathogens, primarily favoring cooler, subtropical conditions, demonstrate a significant overlap in their climatic niches, thus affecting a broad range species. Here, we aim to explore the role of global warming and other climatic factors in the dispersal and evolution of these pathogens and to predict the future implications for amphibian populations worldwide. Given the limitations of data availability We conducted a thorough analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens using the currently available distributional data, including our own. We used , We engaged in a comprehensive analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens, utilizing predictive models to anticipate potential shifts in their future distribution and evaluate the capacity for CNE in response to climate change. We show that Bd and Bsal are likely to experience a total reduction in their current potential distributions by 2040, while Ranavirus and PerkinseaPerkinsus may expand their distributions. Interestingly, CNE has played a significant role in influencing the climatic niches of Bd and Bsal, with lineage dependent variations. However, there was no strong correlation found between virulence of Bd and its climatic niche. On the contrary, ranaviruses Ranaviruses and PerkinseaPerkinsus showed evidence of sporadic and recent CNE. Moreover, the emergence of lineages adapted to warmer climates suggests an ongoing CNE and a potential evolutionary response to climate change. With increased infection risk, particularly for Asian amphibians (from Ranavirus and PerkinseaPerkinsus), and the vulnerability of the southern hemisphere (except Bsal) due to limited prior exposure, this study underscores the urgent need for close monitoring and preventive measures, including stringent biosecurity protocols such as risk analysis and pre-border pathogen screening. Our study provides a critical framework for international collaboration and guideline development for amphibian trade, while contributing to the deeper dialogue on mitigating impacts of climate change on wildlife diseases.

    ZENODOarrow_drop_down
    ZENODO
    Article . 2025
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      ZENODOarrow_drop_down
      ZENODO
      Article . 2025
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; +5 Authors

    Climate change, along with infectious diseasespathogens notably Batrachochytrium dendrobatidis (Bd), B. salamandrivorans (Bsal), Ranavirus, and PerkinseaPerkinsus, continue to devastate global amphibian populations, contributing to the greatest vertebrate extinctions of the Anthropocene. These pathogens, primarily favoring cooler, subtropical conditions, demonstrate a significant overlap in their climatic niches, thus affecting a broad range species. Here, we aim to explore the role of global warming and other climatic factors in the dispersal and evolution of these pathogens and to predict the future implications for amphibian populations worldwide. Given the limitations of data availability We conducted a thorough analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens using the currently available distributional data, including our own. We used , We engaged in a comprehensive analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens, utilizing predictive models to anticipate potential shifts in their future distribution and evaluate the capacity for CNE in response to climate change. We show that Bd and Bsal are likely to experience a total reduction in their current potential distributions by 2040, while Ranavirus and PerkinseaPerkinsus may expand their distributions. Interestingly, CNE has played a significant role in influencing the climatic niches of Bd and Bsal, with lineage dependent variations. However, there was no strong correlation found between virulence of Bd and its climatic niche. On the contrary, ranaviruses Ranaviruses and PerkinseaPerkinsus showed evidence of sporadic and recent CNE. Moreover, the emergence of lineages adapted to warmer climates suggests an ongoing CNE and a potential evolutionary response to climate change. With increased infection risk, particularly for Asian amphibians (from Ranavirus and PerkinseaPerkinsus), and the vulnerability of the southern hemisphere (except Bsal) due to limited prior exposure, this study underscores the urgent need for close monitoring and preventive measures, including stringent biosecurity protocols such as risk analysis and pre-border pathogen screening. Our study provides a critical framework for international collaboration and guideline development for amphibian trade, while contributing to the deeper dialogue on mitigating impacts of climate change on wildlife diseases.

    ZENODOarrow_drop_down
    ZENODO
    Article . 2026
    License: CC BY
    Data sources: Datacite
    ZENODO
    Article . 2026
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      ZENODOarrow_drop_down
      ZENODO
      Article . 2026
      License: CC BY
      Data sources: Datacite
      ZENODO
      Article . 2026
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; +5 Authors

    Climatic niche evolution of disease-causing pathogens driving amphibian declines

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility5
    visibilityviews5
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; +5 Authors

    Climate change, along with infectious diseasespathogens notably Batrachochytrium dendrobatidis (Bd), B. salamandrivorans (Bsal), Ranavirus, and PerkinseaPerkinsus, continue to devastate global amphibian populations, contributing to the greatest vertebrate extinctions of the Anthropocene. These pathogens, primarily favoring cooler, subtropical conditions, demonstrate a significant overlap in their climatic niches, thus affecting a broad range species. Here, we aim to explore the role of global warming and other climatic factors in the dispersal and evolution of these pathogens and to predict the future implications for amphibian populations worldwide. Given the limitations of data availability We conducted a thorough analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens using the currently available distributional data, including our own. We used , We engaged in a comprehensive analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens, utilizing predictive models to anticipate potential shifts in their future distribution and evaluate the capacity for CNE in response to climate change. We show that Bd and Bsal are likely to experience a total reduction in their current potential distributions by 2040, while Ranavirus and PerkinseaPerkinsus may expand their distributions. Interestingly, CNE has played a significant role in influencing the climatic niches of Bd and Bsal, with lineage dependent variations. However, there was no strong correlation found between virulence of Bd and its climatic niche. On the contrary, ranaviruses Ranaviruses and PerkinseaPerkinsus showed evidence of sporadic and recent CNE. Moreover, the emergence of lineages adapted to warmer climates suggests an ongoing CNE and a potential evolutionary response to climate change. With increased infection risk, particularly for Asian amphibians (from Ranavirus and PerkinseaPerkinsus), and the vulnerability of the southern hemisphere (except Bsal) due to limited prior exposure, this study underscores the urgent need for close monitoring and preventive measures, including stringent biosecurity protocols such as risk analysis and pre-border pathogen screening. Our study provides a critical framework for international collaboration and guideline development for amphibian trade, while contributing to the deeper dialogue on mitigating impacts of climate change on wildlife diseases.

    ZENODOarrow_drop_down
    ZENODO
    Article . 2025
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      ZENODOarrow_drop_down
      ZENODO
      Article . 2025
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; +5 Authors

    Climate change, along with infectious diseasespathogens notably Batrachochytrium dendrobatidis (Bd), B. salamandrivorans (Bsal), Ranavirus, and PerkinseaPerkinsus, continue to devastate global amphibian populations, contributing to the greatest vertebrate extinctions of the Anthropocene. These pathogens, primarily favoring cooler, subtropical conditions, demonstrate a significant overlap in their climatic niches, thus affecting a broad range species. Here, we aim to explore the role of global warming and other climatic factors in the dispersal and evolution of these pathogens and to predict the future implications for amphibian populations worldwide. Given the limitations of data availability We conducted a thorough analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens using the currently available distributional data, including our own. We used , We engaged in a comprehensive analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens, utilizing predictive models to anticipate potential shifts in their future distribution and evaluate the capacity for CNE in response to climate change. We show that Bd and Bsal are likely to experience a total reduction in their current potential distributions by 2040, while Ranavirus and PerkinseaPerkinsus may expand their distributions. Interestingly, CNE has played a significant role in influencing the climatic niches of Bd and Bsal, with lineage dependent variations. However, there was no strong correlation found between virulence of Bd and its climatic niche. On the contrary, ranaviruses Ranaviruses and PerkinseaPerkinsus showed evidence of sporadic and recent CNE. Moreover, the emergence of lineages adapted to warmer climates suggests an ongoing CNE and a potential evolutionary response to climate change. With increased infection risk, particularly for Asian amphibians (from Ranavirus and PerkinseaPerkinsus), and the vulnerability of the southern hemisphere (except Bsal) due to limited prior exposure, this study underscores the urgent need for close monitoring and preventive measures, including stringent biosecurity protocols such as risk analysis and pre-border pathogen screening. Our study provides a critical framework for international collaboration and guideline development for amphibian trade, while contributing to the deeper dialogue on mitigating impacts of climate change on wildlife diseases.

    ZENODOarrow_drop_down
    ZENODO
    Article . 2026
    License: CC BY
    Data sources: Datacite
    ZENODO
    Article . 2026
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      ZENODOarrow_drop_down
      ZENODO
      Article . 2026
      License: CC BY
      Data sources: Datacite
      ZENODO
      Article . 2026
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph