- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Marko Aunedi; Andreas V. Olympios; Antonio M. Pantaleo; Matthias Mersch; Christos N. Markides;Data availability: Data will be made available on request. An earlier version of this paper was presented during the 36th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems (ECOS 2023) held in Las Palmas de Gran Canaria, Spain, 25–30 June 2023. This paper studies portfolios of electricity- and hydrogen-driven heat pumps, electricity- and hydrogen-driven boilers and thermal energy storage technologies from an energy system perspective. Thermodynamic and component-costing models of heating and cooling technologies are integrated into a whole-energy system cost optimisation model to determine configurations of heating and cooling systems that minimise the overall system cost. Case studies focus on two archetypal systems (North and South) that differ in terms of heating and cooling demand and availability profiles of solar and wind generation. Modelling results suggest that optimal capacities for heating and cooling technologies vary significantly depending on system properties. Between 83 % and 100 % of low-carbon heat is supplied by electric heat pump technologies, with the rest contributed by electric or hydrogen boilers, supplemented by heat storage. Air-to-air electric heat pumps emerge as a significant contributor to both heating and cooling, although their contribution may be constrained by the compatibility with existing heating systems and the inability to provide hot water. Nevertheless, they are found to be a useful supplementary source of space heating that can displace between 20 and 33 GWth of other heating technologies compared to the case where they do not contribute to space heating. The research presented in this paper has been supported by the UK Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/R045518/1] (IDLES Programme).
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2025License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/30620Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2025License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2025.134602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2025License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/30620Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2025License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2025.134602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Informa UK Limited Mohamed A. Hassaan; Antonio Pantaleo; Luigi Tedone; Marwa R. Elkatory; Rehab M. Ali; Ahmed El Nemr; Giuseppe De Mastro;handle: 11586/268441
The key to bio-gasification is the lignocellulosic materials provided in the herbaceous crops which are considered to be renewable energy resources. This study focuses on pretreatments of five sele...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2019.1705797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2019.1705797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019 SpainPublisher:IEEE Authors: Moposita, Karen; Noboa-López, Xavier; Clairand, Jean-Michel; Briceño-León, Marco; +2 AuthorsMoposita, Karen; Noboa-López, Xavier; Clairand, Jean-Michel; Briceño-León, Marco; Escrivá-Escrivá, Guillermo; Pantaleo, Antonio-Marco;handle: 10251/180070
[EN] The monitoring of industry processes can optimize the use of resources and improve its efficiency. In dairy farms, several parameters from the processes must be monitored. This paper proposes the design of a monitoring system for a farm that produces dairy products and jams. Several similar studies are analysed. Based on this, and on the farm characteristics, a novel design is developed. The principal benefits of the system are also exposed. This work was supported by Universidad de las Americas - Ecuador under project SIS.JCG.19.01. The authors would like to thank Monica Guevara, Andrea Maldonado, and Francisca Martinez from Universidad de las Americas - Ecuador for their valuable help and information.
https://riunet.upv.e... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1109/chilec...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/chilecon47746.2019.8988000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 94 Powered bymore_vert https://riunet.upv.e... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1109/chilec...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/chilecon47746.2019.8988000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Sokolnikova P.; Lombardi P.; Arendarski B.; Suslov K.; Pantaleo A. M.; Kranhold M.; Komarnicki P.;handle: 11586/270778
Abstract About 15 million people live in rural communities in the Russian Federation. Most of them are not energetically supplied from the main national infrastructures (electric and gas). People living in such isolated communities use diesel engines for generating electricity and heat. In many cases, diesel is supplied using rail tracks, boats or even helicopters. Consequently, the generation of electricity has very high costs and very low reliability. For this reason, more and more rural isolated communities are using renewable energy sources to decrease their dependency on diesel sources. This study deals with the concept of net-zero multi-energy systems in rural and stand-alone areas. A methodology, based on economical, ecological, technical and social criteria, has been developed for planning the generation capacity and sizing the energy storage units. In addition, controlling algorithms have been developed to deal with the volatility of renewable energy sources (wind and sun) and integrate heat/electricity energy systems. The proposed methodology has been applied to the design of a net-zero energy system for a Siberian rural energy community.
Renewable Energy arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2019 ItalyPublisher:IOP Publishing Authors: Christos N. Markides; Kai Wang; Giacomo Scarascia Mugnozza; Antonio M. Pantaleo; +1 AuthorsChristos N. Markides; Kai Wang; Giacomo Scarascia Mugnozza; Antonio M. Pantaleo; Antonio M. Pantaleo;handle: 11589/250142
Abstract This paper presents a technoeconomic analysis of a solar combined heat and power (S-CHP) system based on hybrid photovoltaic-thermal (PVT) collectors for distributed cogeneration in a greenhouse tomato-farm in Bari, Italy. The thermal and electrical demands of the greenhouse of interest are currently fulfilled by a gas-fired CHP system that features an internal combustion engine (ICE) prime mover, and partially by an auxiliary gas boiler and electricity from the grid. A PVT-water S-CHP system is designed and sized based on a transient model, with hourly weather data and measured demand data given as inputs. Annual simulations are performed to predict the transient behaviour of the S-CHP system and to assess the system’s energy outputs. The economic profitability of such solution is also evaluated by considering the investment costs and cost savings due to the reduced on-site energy consumption. The results show that, with an installation area of 30,000 m2, the PVT S-CHP system is able to cover up to 73% of the annual thermal demand of the greenhouse, while delivering a net electrical output 2.6 times that of the annual electrical demand. This performance is similar to that achieved by the equivalent ICE-CHP system (92% and 2 times, respectively). Furthermore, the total annual cost saving of the PVT S-CHP system is more than 6 times higher than that of the ICE system, due to the much lower fuel cost of the PVT system. Similarly, the potential CO2 emission reduction associated with the PVT system is considerably higher, at 3010 tCO2/year saved (vs. 86 tCO2/year). The payback time of the PVT system is not significantly longer than that of the ICE system (10.4 years vs. 8.4 years), but its levelized cost of energy is much lower (0.076 €/kWh vs. 0.132 €/kWh) due to the higher annual cost savings. These results indicate that such PVT S-CHP systems have an excellent technoeconomic potential in the proposed greenhouse applications and could be competitive over conventional fossil-fuel-based ICE-CHP systems in terms of energetic, economic and also environmental metrics.
IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefIOP Conference Series Materials Science and EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio Istituzionale della Ricerca - Politecnico di BariConference object . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/609/7/072026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 Powered bymore_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefIOP Conference Series Materials Science and EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio Istituzionale della Ricerca - Politecnico di BariConference object . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/609/7/072026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, ItalyPublisher:Elsevier BV Funded by:UKRI | Integrated Development of..., UKRI | Science and Solutions for..., UKRI | Energy-Use Minimisation v...UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National Strategy ,UKRI| Science and Solutions for a Changing Planet ,UKRI| Energy-Use Minimisation via High Performance Heat-Power-Cooling Conversion and Integration: A Holistic Molecules to Technologies to Systems ApproachChristos N. Markides; P Sapin; Antonio M. Pantaleo; Antonio M. Pantaleo; Andreas V. Olympios;handle: 11586/307579 , 10044/1/79752
Abstract This paper presents a multi-scale framework for the design and comparison of centralised and distributed heat generation solutions. An extensive analysis of commercially available products on the UK market is conducted to gather information on the performance and cost of a range of gas-fired combined heat and power (CHP) systems, air-source heat pumps (ASHPs) and ground-source heat pumps (GSHPs). Data-driven models with associated uncertainty bounds are derived from the collected data, which capture cost and performance variations with scale (i.e., size and rating) and operating conditions. In addition, a comprehensive thermoeconomic (thermodynamic and component-costing) heat pump model, validated against manufacturer data, is developed to capture design-related performance and cost variations, thus reducing technology-related model uncertainties. The novelty of this paper lies in the use of multi-fidelity approaches for the comparison of the economic and environmental potential of important heat-generation solutions: (i) centralised gas-fired CHP systems associated with district heating network; (ii) gas-fired CHP systems or GSHPs providing heat to differentiated energy communities; and (iii) small-scale micro-CHP systems, ASHPs or GSHPs, installed at the household level. The pathways are evaluated for the case of the Isle of Dogs district in London, UK. A centralised CHP system appears as the most profitable option, achieving annual savings of £13 M compared to the use of decentralised boilers and a levelised cost of heat equal to 31 £/MWhth. However, if the carbon intensity of the electrical grid continues to reduce at current rates, CHP systems will only provide minimal carbon savings compared to boilers (
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/79752Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/79752Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 ItalyPublisher:Elsevier BV Authors: Blanchet C. A. C.; Pantaleo A. M.; van Dam K. H.;handle: 11586/270924
Argentina targets a 20% share of renewables in the energy mix by 2025 and a 15% emissions reduction by 2030, while at the same time removing subsidies for grid electricity. This paper aims to provide a feasible solution for small farm owners for sustainable and affordable energy: a grid-connected hybrid system able to fulfill the demand in a cheaper, reliable and sustainable way. The case study of an existing dairy farm in Carmen de Areco, Buenos Aires, is taken. A grid-connected hybrid system with solar photovoltaics, unheated anaerobic digestion (AD) coupled to an internal combustion engine and storage system, was selected. The size of the hybrid system was optimized via a mathematical model that compared different technologies. The interrelation between sources was economically optimized in order to match the demand on an hourly basis. The scenario comparison defined the optimal solution for this case study, which was the installation of an unheated AD plant with 2.4 kW capacity, and 16 solar panels with a capacity of 5.2 kW, added to a shift in the demand profile. The initial investment required is 17,042 USD, with a payback of 3.4 years and a GHG reduction of 275.9 tons of CO2 eq per year.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli Studi di Bari Aldo Moro: CINECA IRISPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-818634-3.50269-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli Studi di Bari Aldo Moro: CINECA IRISPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-818634-3.50269-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, Italy, ItalyPublisher:MDPI AG Funded by:UKRI | Integrated Development of...UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National StrategyFrancesco Calise; Francesco L. Cappiello; Maria Vicidomini; Jian Song; Antonio M. Pantaleo; Suzan Abdelhady; Ahmed Shaban; Christos N. Markides;doi: 10.3390/en14041012
handle: 11588/881467 , 11586/413495 , 10044/1/87119
In this research, a technoeconomic comparison of energy efficiency options for energy districts located in different climatic areas (Naples, Italy and Fayoum, Egypt) is presented. A dynamic simulation model based on TRNSYS is developed to evaluate the different energy efficiency options, which includes different buildings of conceived districts. The TRNSYS model is integrated with the plug-in Google SketchUp TRNSYS3d to estimate the thermal load of the buildings and the temporal variation. The model considers the unsteady state energy balance and includes all the features of the building’s envelope. For the considered climatic zones and for the different energy efficiency measures, primary energy savings, pay back periods and reduced CO2 emissions are evaluated. The proposed energy efficiency options include a district heating system for hot water supply, air-to-air conventional heat pumps for both cooling and space heating of the buildings and the integration of photovoltaic and solar thermal systems. The energy actions are compared to baseline scenarios, where the hot water and space heating demand is satisfied by conventional natural gas boilers, the cooling demand is met by conventional air-to-air vapor compression heat pumps and the electric energy demand is satisfied by the power grid. The simulation results provide valuable guidance for selecting the optimal designs and system configurations, as well as suggest guidelines to policymakers to define decarbonization targets in different scenarios. The scenario of Fayoum offers a savings of 67% in primary energy, but the associated payback period extends to 23 years due to the lower cost of energy in comparison to Naples.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1012/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/413495Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/87119Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1012/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/413495Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/87119Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022 Italy, United KingdomPublisher:Elsevier BV Funded by:UKRI | Integrated Development of...UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National StrategyMarko Aunedi; Maria Yliruka; Shahab Dehghan; Antonio Marco Pantaleo; Nilay Shah; Goran Strbac;handle: 11586/428601 , 10044/1/97882
Delivering low-carbon heat will require the substitution of natural gas with low-carbon alternatives such as electricity and hydrogen. The objective of this paper is to develop a method to soft-link two advanced, investment-optimising energy system models, RTN (Resource-Technology Network) and WeSIM (Whole-electricity System Investment Model), in order to assess cost-efficient heat decarbonisation pathways for the UK while utilising the respective strengths of the two models. The linking procedure included passing on hourly electricity prices from WeSIM as input to RTN, and returning capacities and locations of hydrogen generation and shares of electricity and hydrogen in heat supply from RTN to WeSIM. The outputs demonstrate that soft-linking can improve the quality of the solution, while providing useful insights into the cost-efficient pathways for zero-carbon heating. Quantitative results point to the cost-effectiveness of using a mix of electricity and hydrogen technologies for delivering zero-carbon heat, also demonstrating a high level of interaction between electricity and hydrogen infrastructure in a zero-carbon system. Hydrogen from gas reforming with carbon capture and storage can play a significant role in the medium term, while remaining a cost-efficient option for supplying peak heat demand in the longer term, with the bulk of heat demand being supplied by electric heat pumps.
Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/428601Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/97882Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/27495Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryBrunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archivehttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/428601Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/97882Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/27495Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryBrunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archivehttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 United KingdomPublisher:Elsevier BV Antonio M. Pantaleo; Antonio M. Pantaleo; J. Fordham; Christos N. Markides; Oyeniyi A. Oyewunmi;Abstract Coffee torrefaction is carried out by means of hot air at average temperature of 200-240°C and with intermittent cycles where a lot of heat is discharged from the stack. CHP systems have been investigated to provide heat to the process. However, much of the heat released in the process is from the afterburner that heats up the flue gas to higher temperatures to remove volatile organic compounds and other pollutants. In this paper, the techno-economic feasibility of utilising waste heat from a rotating drum coffee roasting with partial hot gas recycling is assessed. A cost analysis is adopted to compare the profitability of two systems configurations integrated into the process. The case study of a major coffee torrefaction firm with 500 kg/hr production capacity in the Italian energy framework is taken. The CHP options under investigation are: (i) regenerative topping micro gas turbine (MGT) coupled to the existing modulating gas burner to generate hot air for the roasting process; (ii) intermittent waste heat recovery from the hot flue gas through an organic Rankine cycle (ORC) coupled to a thermal storage buffer. The results show that the profitability of these investments is highly influenced by the natural gas/electricity cost ratio, by the coffee torrefaction production capacity and intermittency level of discharged heat. In this case study, MGT seems to be more profitable than waste heat recovery via ORC due to the intermittency of the heat source and the relatively high electricity/heat cost ratio.
Energy Procedia arrow_drop_down Spiral - Imperial College Digital RepositoryConference object . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Spiral - Imperial College Digital RepositoryConference object . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Marko Aunedi; Andreas V. Olympios; Antonio M. Pantaleo; Matthias Mersch; Christos N. Markides;Data availability: Data will be made available on request. An earlier version of this paper was presented during the 36th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems (ECOS 2023) held in Las Palmas de Gran Canaria, Spain, 25–30 June 2023. This paper studies portfolios of electricity- and hydrogen-driven heat pumps, electricity- and hydrogen-driven boilers and thermal energy storage technologies from an energy system perspective. Thermodynamic and component-costing models of heating and cooling technologies are integrated into a whole-energy system cost optimisation model to determine configurations of heating and cooling systems that minimise the overall system cost. Case studies focus on two archetypal systems (North and South) that differ in terms of heating and cooling demand and availability profiles of solar and wind generation. Modelling results suggest that optimal capacities for heating and cooling technologies vary significantly depending on system properties. Between 83 % and 100 % of low-carbon heat is supplied by electric heat pump technologies, with the rest contributed by electric or hydrogen boilers, supplemented by heat storage. Air-to-air electric heat pumps emerge as a significant contributor to both heating and cooling, although their contribution may be constrained by the compatibility with existing heating systems and the inability to provide hot water. Nevertheless, they are found to be a useful supplementary source of space heating that can displace between 20 and 33 GWth of other heating technologies compared to the case where they do not contribute to space heating. The research presented in this paper has been supported by the UK Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/R045518/1] (IDLES Programme).
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2025License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/30620Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2025License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2025.134602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2025License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/30620Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2025License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2025.134602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Informa UK Limited Mohamed A. Hassaan; Antonio Pantaleo; Luigi Tedone; Marwa R. Elkatory; Rehab M. Ali; Ahmed El Nemr; Giuseppe De Mastro;handle: 11586/268441
The key to bio-gasification is the lignocellulosic materials provided in the herbaceous crops which are considered to be renewable energy resources. This study focuses on pretreatments of five sele...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2019.1705797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2019.1705797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019 SpainPublisher:IEEE Authors: Moposita, Karen; Noboa-López, Xavier; Clairand, Jean-Michel; Briceño-León, Marco; +2 AuthorsMoposita, Karen; Noboa-López, Xavier; Clairand, Jean-Michel; Briceño-León, Marco; Escrivá-Escrivá, Guillermo; Pantaleo, Antonio-Marco;handle: 10251/180070
[EN] The monitoring of industry processes can optimize the use of resources and improve its efficiency. In dairy farms, several parameters from the processes must be monitored. This paper proposes the design of a monitoring system for a farm that produces dairy products and jams. Several similar studies are analysed. Based on this, and on the farm characteristics, a novel design is developed. The principal benefits of the system are also exposed. This work was supported by Universidad de las Americas - Ecuador under project SIS.JCG.19.01. The authors would like to thank Monica Guevara, Andrea Maldonado, and Francisca Martinez from Universidad de las Americas - Ecuador for their valuable help and information.
https://riunet.upv.e... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1109/chilec...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/chilecon47746.2019.8988000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 94 Powered bymore_vert https://riunet.upv.e... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1109/chilec...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/chilecon47746.2019.8988000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Sokolnikova P.; Lombardi P.; Arendarski B.; Suslov K.; Pantaleo A. M.; Kranhold M.; Komarnicki P.;handle: 11586/270778
Abstract About 15 million people live in rural communities in the Russian Federation. Most of them are not energetically supplied from the main national infrastructures (electric and gas). People living in such isolated communities use diesel engines for generating electricity and heat. In many cases, diesel is supplied using rail tracks, boats or even helicopters. Consequently, the generation of electricity has very high costs and very low reliability. For this reason, more and more rural isolated communities are using renewable energy sources to decrease their dependency on diesel sources. This study deals with the concept of net-zero multi-energy systems in rural and stand-alone areas. A methodology, based on economical, ecological, technical and social criteria, has been developed for planning the generation capacity and sizing the energy storage units. In addition, controlling algorithms have been developed to deal with the volatility of renewable energy sources (wind and sun) and integrate heat/electricity energy systems. The proposed methodology has been applied to the design of a net-zero energy system for a Siberian rural energy community.
Renewable Energy arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2019 ItalyPublisher:IOP Publishing Authors: Christos N. Markides; Kai Wang; Giacomo Scarascia Mugnozza; Antonio M. Pantaleo; +1 AuthorsChristos N. Markides; Kai Wang; Giacomo Scarascia Mugnozza; Antonio M. Pantaleo; Antonio M. Pantaleo;handle: 11589/250142
Abstract This paper presents a technoeconomic analysis of a solar combined heat and power (S-CHP) system based on hybrid photovoltaic-thermal (PVT) collectors for distributed cogeneration in a greenhouse tomato-farm in Bari, Italy. The thermal and electrical demands of the greenhouse of interest are currently fulfilled by a gas-fired CHP system that features an internal combustion engine (ICE) prime mover, and partially by an auxiliary gas boiler and electricity from the grid. A PVT-water S-CHP system is designed and sized based on a transient model, with hourly weather data and measured demand data given as inputs. Annual simulations are performed to predict the transient behaviour of the S-CHP system and to assess the system’s energy outputs. The economic profitability of such solution is also evaluated by considering the investment costs and cost savings due to the reduced on-site energy consumption. The results show that, with an installation area of 30,000 m2, the PVT S-CHP system is able to cover up to 73% of the annual thermal demand of the greenhouse, while delivering a net electrical output 2.6 times that of the annual electrical demand. This performance is similar to that achieved by the equivalent ICE-CHP system (92% and 2 times, respectively). Furthermore, the total annual cost saving of the PVT S-CHP system is more than 6 times higher than that of the ICE system, due to the much lower fuel cost of the PVT system. Similarly, the potential CO2 emission reduction associated with the PVT system is considerably higher, at 3010 tCO2/year saved (vs. 86 tCO2/year). The payback time of the PVT system is not significantly longer than that of the ICE system (10.4 years vs. 8.4 years), but its levelized cost of energy is much lower (0.076 €/kWh vs. 0.132 €/kWh) due to the higher annual cost savings. These results indicate that such PVT S-CHP systems have an excellent technoeconomic potential in the proposed greenhouse applications and could be competitive over conventional fossil-fuel-based ICE-CHP systems in terms of energetic, economic and also environmental metrics.
IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefIOP Conference Series Materials Science and EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio Istituzionale della Ricerca - Politecnico di BariConference object . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/609/7/072026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 Powered bymore_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefIOP Conference Series Materials Science and EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio Istituzionale della Ricerca - Politecnico di BariConference object . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/609/7/072026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, ItalyPublisher:Elsevier BV Funded by:UKRI | Integrated Development of..., UKRI | Science and Solutions for..., UKRI | Energy-Use Minimisation v...UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National Strategy ,UKRI| Science and Solutions for a Changing Planet ,UKRI| Energy-Use Minimisation via High Performance Heat-Power-Cooling Conversion and Integration: A Holistic Molecules to Technologies to Systems ApproachChristos N. Markides; P Sapin; Antonio M. Pantaleo; Antonio M. Pantaleo; Andreas V. Olympios;handle: 11586/307579 , 10044/1/79752
Abstract This paper presents a multi-scale framework for the design and comparison of centralised and distributed heat generation solutions. An extensive analysis of commercially available products on the UK market is conducted to gather information on the performance and cost of a range of gas-fired combined heat and power (CHP) systems, air-source heat pumps (ASHPs) and ground-source heat pumps (GSHPs). Data-driven models with associated uncertainty bounds are derived from the collected data, which capture cost and performance variations with scale (i.e., size and rating) and operating conditions. In addition, a comprehensive thermoeconomic (thermodynamic and component-costing) heat pump model, validated against manufacturer data, is developed to capture design-related performance and cost variations, thus reducing technology-related model uncertainties. The novelty of this paper lies in the use of multi-fidelity approaches for the comparison of the economic and environmental potential of important heat-generation solutions: (i) centralised gas-fired CHP systems associated with district heating network; (ii) gas-fired CHP systems or GSHPs providing heat to differentiated energy communities; and (iii) small-scale micro-CHP systems, ASHPs or GSHPs, installed at the household level. The pathways are evaluated for the case of the Isle of Dogs district in London, UK. A centralised CHP system appears as the most profitable option, achieving annual savings of £13 M compared to the use of decentralised boilers and a levelised cost of heat equal to 31 £/MWhth. However, if the carbon intensity of the electrical grid continues to reduce at current rates, CHP systems will only provide minimal carbon savings compared to boilers (
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/79752Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/79752Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 ItalyPublisher:Elsevier BV Authors: Blanchet C. A. C.; Pantaleo A. M.; van Dam K. H.;handle: 11586/270924
Argentina targets a 20% share of renewables in the energy mix by 2025 and a 15% emissions reduction by 2030, while at the same time removing subsidies for grid electricity. This paper aims to provide a feasible solution for small farm owners for sustainable and affordable energy: a grid-connected hybrid system able to fulfill the demand in a cheaper, reliable and sustainable way. The case study of an existing dairy farm in Carmen de Areco, Buenos Aires, is taken. A grid-connected hybrid system with solar photovoltaics, unheated anaerobic digestion (AD) coupled to an internal combustion engine and storage system, was selected. The size of the hybrid system was optimized via a mathematical model that compared different technologies. The interrelation between sources was economically optimized in order to match the demand on an hourly basis. The scenario comparison defined the optimal solution for this case study, which was the installation of an unheated AD plant with 2.4 kW capacity, and 16 solar panels with a capacity of 5.2 kW, added to a shift in the demand profile. The initial investment required is 17,042 USD, with a payback of 3.4 years and a GHG reduction of 275.9 tons of CO2 eq per year.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli Studi di Bari Aldo Moro: CINECA IRISPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-818634-3.50269-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversità degli Studi di Bari Aldo Moro: CINECA IRISPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-818634-3.50269-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, Italy, ItalyPublisher:MDPI AG Funded by:UKRI | Integrated Development of...UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National StrategyFrancesco Calise; Francesco L. Cappiello; Maria Vicidomini; Jian Song; Antonio M. Pantaleo; Suzan Abdelhady; Ahmed Shaban; Christos N. Markides;doi: 10.3390/en14041012
handle: 11588/881467 , 11586/413495 , 10044/1/87119
In this research, a technoeconomic comparison of energy efficiency options for energy districts located in different climatic areas (Naples, Italy and Fayoum, Egypt) is presented. A dynamic simulation model based on TRNSYS is developed to evaluate the different energy efficiency options, which includes different buildings of conceived districts. The TRNSYS model is integrated with the plug-in Google SketchUp TRNSYS3d to estimate the thermal load of the buildings and the temporal variation. The model considers the unsteady state energy balance and includes all the features of the building’s envelope. For the considered climatic zones and for the different energy efficiency measures, primary energy savings, pay back periods and reduced CO2 emissions are evaluated. The proposed energy efficiency options include a district heating system for hot water supply, air-to-air conventional heat pumps for both cooling and space heating of the buildings and the integration of photovoltaic and solar thermal systems. The energy actions are compared to baseline scenarios, where the hot water and space heating demand is satisfied by conventional natural gas boilers, the cooling demand is met by conventional air-to-air vapor compression heat pumps and the electric energy demand is satisfied by the power grid. The simulation results provide valuable guidance for selecting the optimal designs and system configurations, as well as suggest guidelines to policymakers to define decarbonization targets in different scenarios. The scenario of Fayoum offers a savings of 67% in primary energy, but the associated payback period extends to 23 years due to the lower cost of energy in comparison to Naples.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1012/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/413495Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/87119Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1012/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/413495Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/87119Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022 Italy, United KingdomPublisher:Elsevier BV Funded by:UKRI | Integrated Development of...UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National StrategyMarko Aunedi; Maria Yliruka; Shahab Dehghan; Antonio Marco Pantaleo; Nilay Shah; Goran Strbac;handle: 11586/428601 , 10044/1/97882
Delivering low-carbon heat will require the substitution of natural gas with low-carbon alternatives such as electricity and hydrogen. The objective of this paper is to develop a method to soft-link two advanced, investment-optimising energy system models, RTN (Resource-Technology Network) and WeSIM (Whole-electricity System Investment Model), in order to assess cost-efficient heat decarbonisation pathways for the UK while utilising the respective strengths of the two models. The linking procedure included passing on hourly electricity prices from WeSIM as input to RTN, and returning capacities and locations of hydrogen generation and shares of electricity and hydrogen in heat supply from RTN to WeSIM. The outputs demonstrate that soft-linking can improve the quality of the solution, while providing useful insights into the cost-efficient pathways for zero-carbon heating. Quantitative results point to the cost-effectiveness of using a mix of electricity and hydrogen technologies for delivering zero-carbon heat, also demonstrating a high level of interaction between electricity and hydrogen infrastructure in a zero-carbon system. Hydrogen from gas reforming with carbon capture and storage can play a significant role in the medium term, while remaining a cost-efficient option for supplying peak heat demand in the longer term, with the bulk of heat demand being supplied by electric heat pumps.
Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/428601Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/97882Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/27495Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryBrunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archivehttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/428601Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/97882Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/27495Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryBrunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archivehttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 United KingdomPublisher:Elsevier BV Antonio M. Pantaleo; Antonio M. Pantaleo; J. Fordham; Christos N. Markides; Oyeniyi A. Oyewunmi;Abstract Coffee torrefaction is carried out by means of hot air at average temperature of 200-240°C and with intermittent cycles where a lot of heat is discharged from the stack. CHP systems have been investigated to provide heat to the process. However, much of the heat released in the process is from the afterburner that heats up the flue gas to higher temperatures to remove volatile organic compounds and other pollutants. In this paper, the techno-economic feasibility of utilising waste heat from a rotating drum coffee roasting with partial hot gas recycling is assessed. A cost analysis is adopted to compare the profitability of two systems configurations integrated into the process. The case study of a major coffee torrefaction firm with 500 kg/hr production capacity in the Italian energy framework is taken. The CHP options under investigation are: (i) regenerative topping micro gas turbine (MGT) coupled to the existing modulating gas burner to generate hot air for the roasting process; (ii) intermittent waste heat recovery from the hot flue gas through an organic Rankine cycle (ORC) coupled to a thermal storage buffer. The results show that the profitability of these investments is highly influenced by the natural gas/electricity cost ratio, by the coffee torrefaction production capacity and intermittency level of discharged heat. In this case study, MGT seems to be more profitable than waste heat recovery via ORC due to the intermittency of the heat source and the relatively high electricity/heat cost ratio.
Energy Procedia arrow_drop_down Spiral - Imperial College Digital RepositoryConference object . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Spiral - Imperial College Digital RepositoryConference object . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu