- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Alexey A. Petrov; Daniil A. Lukyanov; Oleg A. Kopytko; Julia V. Novoselova; Elena V. Alekseeva; Oleg V. Levin;Conductive polymers are widely used as active and auxiliary materials for organic photovoltaic cells due to their easily tunable properties, high electronic conductivity, and light absorption. Several conductive polymers show the cathodic photogalvanic effect in pristine state. Recently, photoelectrochemical oxygen reduction has been demonstrated for nickel complexes of Salen-type ligands. Herein, we report an unexpected inversion of the photogalvanic effect caused by doping of the NiSalen polymers with anionic porphyrins. The observed effect was studied by means of UV-Vis spectroscopy, cyclic voltammetry and chopped light chronoamperometry. While pristine NiSalens exhibit cathodic photopolarization, doping with porphyrins inverts the polarization. As a result, photoelectrochemical oxidation of the ascorbate proceeds smoothly on the NiSalen electrode doped with zinc porphyrins. The highest photocurrents were observed on NiSalen polymer with o-phenylene imine bridge, doped with anionic zinc porphyrin. Assuming this, porphyrin serves both as a catalytic center for the oxidation of ascorbate and an internal electron donor, facilitating the photoinduced charge transport and anodic depolarization.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/6/729/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11060729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/6/729/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11060729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Alexey A. Petrov; Daniil A. Lukyanov; Oleg A. Kopytko; Julia V. Novoselova; Elena V. Alekseeva; Oleg V. Levin;Conductive polymers are widely used as active and auxiliary materials for organic photovoltaic cells due to their easily tunable properties, high electronic conductivity, and light absorption. Several conductive polymers show the cathodic photogalvanic effect in pristine state. Recently, photoelectrochemical oxygen reduction has been demonstrated for nickel complexes of Salen-type ligands. Herein, we report an unexpected inversion of the photogalvanic effect caused by doping of the NiSalen polymers with anionic porphyrins. The observed effect was studied by means of UV-Vis spectroscopy, cyclic voltammetry and chopped light chronoamperometry. While pristine NiSalens exhibit cathodic photopolarization, doping with porphyrins inverts the polarization. As a result, photoelectrochemical oxidation of the ascorbate proceeds smoothly on the NiSalen electrode doped with zinc porphyrins. The highest photocurrents were observed on NiSalen polymer with o-phenylene imine bridge, doped with anionic zinc porphyrin. Assuming this, porphyrin serves both as a catalytic center for the oxidation of ascorbate and an internal electron donor, facilitating the photoinduced charge transport and anodic depolarization.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/6/729/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11060729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/6/729/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11060729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu