- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 France, GermanyPublisher:American Geophysical Union (AGU) Funded by:EC | EMBRACEEC| EMBRACELarry W. Horowitz; Gregory Faluvegi; Drew Shindell; Sophie Szopa; William J. Collins; William J. Collins; Daniel R. Marsh; David Saint-Martin; Douglas E. Kinnison; Klaus-Dirk Gottschaldt; Slimane Bekki; Shingo Watanabe; Kengo Sudo; Daniel Bergmann; Judith Perlwitz; Judith Perlwitz; Irene Cionni; Julie M. Arblaster; Julie M. Arblaster; Philip Cameron-Smith; Jean-Francois Lamarque; Veronika Eyring; Jan Sedláček; Paul Young; Paul Young; Paul Young;doi: 10.1002/jgrd.50316
AbstractOzone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960–2005) and future (2006–2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long‐term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (~20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to ~10 DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/jgrd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jgrd.50316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/jgrd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jgrd.50316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Embargo end date: 16 May 2018 Germany, SwitzerlandPublisher:American Geophysical Union (AGU) Funded by:EC | CRESCENDOEC| CRESCENDOVeronika Eyring; Veronika Eyring; Erich M. Fischer; Ruth Lorenz; Nadja Herger; Reto Knutti; Jan Sedláček;AbstractUncertainties in climate projections exist due to natural variability, scenario uncertainty, and model uncertainty. It has been argued that model uncertainty can be decreased by giving more weight to those models in multimodel ensembles that are more skillful and realistic for a specific process or application. In addition, some models in multimodel ensembles are not independent. We use a weighting approach proposed recently that takes into account both model performance and interdependence and apply it to investigate projections of summer maximum temperature climatology over North America in two regions of different sizes. We quantify the influence of predicting diagnostics included in the method, look at ways how to choose them, and assess the influence of the observational data set used. The trend in shortwave radiation, mean precipitation, sea surface temperature variability, and variability and trend in maximum temperature itself are the most promising constraints on projections of summer maximum temperature over North America. The influence of the observational data sets is large for summer temperature climatology, since the observational and reanalysis products used for absolute maximum temperatures disagree. Including multiple predicting diagnostics leads to more similar results for different data sets. We find that the weighted multimodel mean reduces the change in summer daily temperature maxima compared to the nonweighted mean slightly (0.05–0.45 °C) over the central United States. We show that it is essential to have reliable observations for key variables to be able to constrain multimodel ensembles of future projections.
DLR publication serv... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017jd027992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert DLR publication serv... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017jd027992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 France, GermanyPublisher:American Geophysical Union (AGU) Funded by:EC | EMBRACEEC| EMBRACELarry W. Horowitz; Gregory Faluvegi; Drew Shindell; Sophie Szopa; William J. Collins; William J. Collins; Daniel R. Marsh; David Saint-Martin; Douglas E. Kinnison; Klaus-Dirk Gottschaldt; Slimane Bekki; Shingo Watanabe; Kengo Sudo; Daniel Bergmann; Judith Perlwitz; Judith Perlwitz; Irene Cionni; Julie M. Arblaster; Julie M. Arblaster; Philip Cameron-Smith; Jean-Francois Lamarque; Veronika Eyring; Jan Sedláček; Paul Young; Paul Young; Paul Young;doi: 10.1002/jgrd.50316
AbstractOzone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960–2005) and future (2006–2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long‐term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (~20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to ~10 DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/jgrd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jgrd.50316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/jgrd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jgrd.50316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Embargo end date: 16 May 2018 Germany, SwitzerlandPublisher:American Geophysical Union (AGU) Funded by:EC | CRESCENDOEC| CRESCENDOVeronika Eyring; Veronika Eyring; Erich M. Fischer; Ruth Lorenz; Nadja Herger; Reto Knutti; Jan Sedláček;AbstractUncertainties in climate projections exist due to natural variability, scenario uncertainty, and model uncertainty. It has been argued that model uncertainty can be decreased by giving more weight to those models in multimodel ensembles that are more skillful and realistic for a specific process or application. In addition, some models in multimodel ensembles are not independent. We use a weighting approach proposed recently that takes into account both model performance and interdependence and apply it to investigate projections of summer maximum temperature climatology over North America in two regions of different sizes. We quantify the influence of predicting diagnostics included in the method, look at ways how to choose them, and assess the influence of the observational data set used. The trend in shortwave radiation, mean precipitation, sea surface temperature variability, and variability and trend in maximum temperature itself are the most promising constraints on projections of summer maximum temperature over North America. The influence of the observational data sets is large for summer temperature climatology, since the observational and reanalysis products used for absolute maximum temperatures disagree. Including multiple predicting diagnostics leads to more similar results for different data sets. We find that the weighted multimodel mean reduces the change in summer daily temperature maxima compared to the nonweighted mean slightly (0.05–0.45 °C) over the central United States. We show that it is essential to have reliable observations for key variables to be able to constrain multimodel ensembles of future projections.
DLR publication serv... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017jd027992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert DLR publication serv... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017jd027992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu