Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
46 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bai, Xue; Schenk, Peer M.; Yuan, Zhiguo; Lant, Paul A.; +1 Authors

    Abstract Triacylglyceride (TAG) recovery from algal biomass is primarily limited by the rigid algal cell envelope (cell wall and cell membrane). In this work, the effect of free nitrous acid (FNA) pre-treatment on TAG recovery from algal biomass with six different FNA concentrations is reported. Results show that at a range of low FNA concentrations (0.24–2.25 mg HNO2–N L−1) TAG recovery was strongly enhanced with increasing FNA concentration. An FNA concentration of around 2 mg HNO2–N L−1 resulted in a 3.3-fold increase in fatty acid recovery over untreated algae, but higher FNA concentrations (13.49 and 26.98 mg HNO2–N L−1) were detrimental to TAG recovery. Analysis of the fatty acid profile revealed that the higher FNA concentrations caused a reduction in polyunsaturated fatty acids. Also, the ratio of extracted fatty acids to total lipids was significantly reduced when high FNA concentration were applied, and only non-fatty acid lipids potentially benefited from more intense FNA pre-treatments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jing Zhao; Gaofeng Ni; Maria Piculell; Jie Li; +6 Authors

    This study investigated biofilm establishment, biofilm structure, and microbial community composition of biofilms in three laboratory-scale moving bed biofilm reactors. These reactors were filled with three types of plastic carriers with varied depths of living space for microbial growth. The reactors were operated under the same influent and operational conditions. Along with the operation, the results showed that carriers with grids of 50 μm in height delayed the biofilm development and formed the thinnest biofilm and a carpet-like structure with the lowest α-diversity. In comparison, another two carriers with grids of 200 and 400 μm in height formed thick biofilms and large colonies with more voids and channels. Quantified properties of biofilm thickness, biomass, heterogeneity, portion of the biofilm exposed to the nutrient, and maximum diffusion distance were examined, and the results demonstrated that they almost (except for heterogeneity) strongly correlated to the α-diversity of microbial community. These illustrate that depth of living space, as an important parameter for carrier, could drive the formation of biofilm structure and community composition. It improves understanding of influencing factors on biofilm establishment, structure and its microbial community, and would be helpful for the design of biofilm processes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yilmaz, Gulsum; Lemaire, Romain; Keller, Jurg; Yuan, Zhiguo;

    The effectiveness of an aerobic, anoxic/anaerobic strategy for maintaining the activity of activated sludge performing biological nitrogen and phosphorus removal during long-term starvation is investigated. A lab-scale sequencing batch reactor (SBR) treating abattoir wastewater and achieving high-levels (>95%) of nitrogen, phosphorus and COD removal was used. The reactor was put twice into a so-called "sleeping mode" for a period of 5-6 weeks when the abattoir, where the wastewater was sourced, was closed down for annual maintenance. The "sleeping mode" operation consisted of 15 min aeration in a 6 h SBR cycle. The sludge was allowed to settle in the remaining time of the cycle. The decay rates for ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) were determined to be 0.017 and 0.004 d(-1), respectively. These decay rates correlated well with AOB and NOB population quantified using molecular techniques (FISH). There was negligible phosphate accumulation in the reactor during the first 1-2 weeks of starvation, which was followed by a linear net release of phosphate in the remaining 4-5 weeks at a very slow rate of 1-2 mgP gVSS(-1)d(-1). A sudden decrease in the aerobic activities of polyphosphate accumulating organisms (PAOs), observed via anaerobic/aerobic batch tests, occurred after 2 weeks of starvation. This correlated with a dramatic increase of several metal ions in the liquid phase. The underlying reasons are not clear. A resuscitation period with a gradual increase of the wastewater load was applied during the re-startup of the reactor after both "sleeping mode" periods. Each time, the performance of the reactor in terms of nitrogen and phosphorus removal fully recovered in 4 days.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Water Research
    Article . 2007
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    56
    citations56
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Water Research
      Article . 2007
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Dutta, Paritam K.; Keller, Jurg; Yuan, Zhiguo; Rozendal, Rene A.; +1 Authors

    The treatment of wastewater containing sulfides in bioelec-trochemical systems (BES) causes deposition of sulfur on the anode as a result of a solely electrochemical process. In this study, we investigate whether microorganisms can use this sulfur, ratherthan the anode or soluble sulfate, as an electron acceptor for the oxidation of acetate. Our results indicate that microorganisms use electrodeposited sulfur as preferable electron acceptor over the anode and sulfate and produce sulfide irrespective of electrochemical conditions. Bioelectrochemical and biological sulfide generation pathways were studied under different electrochemical conditions. The obtained results show that the sulfide generation rate at open circuit condition (anode potential -235 +/- 5 mV versus standard hydrogen electrode, SHE)was higher in comparison to the electrochemical sulfide generation even at a lower potential of -275 mV (vs SHE), confirming that sulfide is produced through biological processes without any current generation. However, during closed circuit operation, the overall Coulombic efficiency (97% +/- 2%) is not affected as the produced sulfide (originating from the reduction of deposited sulfur) is spontaneously reoxidized to sulfur when a favorable potential is maintained. This confirms the mediator role of sulfur during acetate oxidation in BES. A diagrammatic representation of the mechanism is proposed to characterize the interactions between acetate oxidation and sulfur conversions on the anode.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    66
    citations66
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vanhooren, H; Yuan, Z; Vanrolleghem, PA;

    We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science and Te...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water Science and Technology
    Article . 2002 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science and Te...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water Science and Technology
      Article . 2002 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhou, Yan; Pijuan, Maite; Zeng, Raymond J.; Yuan, Zhiguo;

    For decades, glycolysis has been generally accepted to supply the reducing power for the anaerobic conversion of volatile fatty acids (VFAs) to polyhydroxyalkanoates (PHAs) by polyphosphate accumulating organisms (PAOs). However, the importance of the tricarboxylic acid (TCA) cycle has also been raised since 1980s. The aim of this study is to demonstrate the involvement of the TCA cycle in the anaerobic metabolism of PAOs. To achieve this goal, the glycogen pool of an activated sludge highly enriched in Candidatus Accumulibacter Phosphatis (hereafter referred to as Accumulibacter), a putative PAO was reduced substantially through starving the sludge under intermittent anaerobic and aerobic conditions. After the starvation, acetate added was still taken up anaerobically and stored as PHA, with negligible glycogen degradation. The metabolic models proposed by Pereira, Hesselmann and Yagci, which predict the formation of reducing power through glycolysis and the full or partial TCA cycle, were used to estimate the carbon fluxes. The results demonstrate that Accumulibacter can use both glycogen and acetate to generate reducing power anaerobically. The anaerobic production of reducing power from acetate is likely through the full TCA cycle. The proportion of TCA cycle involvement depends on the availability of degradable glycogen.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Water Research
    Article . 2009
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    77
    citations77
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Water Research
      Article . 2009
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
46 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bai, Xue; Schenk, Peer M.; Yuan, Zhiguo; Lant, Paul A.; +1 Authors

    Abstract Triacylglyceride (TAG) recovery from algal biomass is primarily limited by the rigid algal cell envelope (cell wall and cell membrane). In this work, the effect of free nitrous acid (FNA) pre-treatment on TAG recovery from algal biomass with six different FNA concentrations is reported. Results show that at a range of low FNA concentrations (0.24–2.25 mg HNO2–N L−1) TAG recovery was strongly enhanced with increasing FNA concentration. An FNA concentration of around 2 mg HNO2–N L−1 resulted in a 3.3-fold increase in fatty acid recovery over untreated algae, but higher FNA concentrations (13.49 and 26.98 mg HNO2–N L−1) were detrimental to TAG recovery. Analysis of the fatty acid profile revealed that the higher FNA concentrations caused a reduction in polyunsaturated fatty acids. Also, the ratio of extracted fatty acids to total lipids was significantly reduced when high FNA concentration were applied, and only non-fatty acid lipids potentially benefited from more intense FNA pre-treatments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jing Zhao; Gaofeng Ni; Maria Piculell; Jie Li; +6 Authors

    This study investigated biofilm establishment, biofilm structure, and microbial community composition of biofilms in three laboratory-scale moving bed biofilm reactors. These reactors were filled with three types of plastic carriers with varied depths of living space for microbial growth. The reactors were operated under the same influent and operational conditions. Along with the operation, the results showed that carriers with grids of 50 μm in height delayed the biofilm development and formed the thinnest biofilm and a carpet-like structure with the lowest α-diversity. In comparison, another two carriers with grids of 200 and 400 μm in height formed thick biofilms and large colonies with more voids and channels. Quantified properties of biofilm thickness, biomass, heterogeneity, portion of the biofilm exposed to the nutrient, and maximum diffusion distance were examined, and the results demonstrated that they almost (except for heterogeneity) strongly correlated to the α-diversity of microbial community. These illustrate that depth of living space, as an important parameter for carrier, could drive the formation of biofilm structure and community composition. It improves understanding of influencing factors on biofilm establishment, structure and its microbial community, and would be helpful for the design of biofilm processes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yilmaz, Gulsum; Lemaire, Romain; Keller, Jurg; Yuan, Zhiguo;

    The effectiveness of an aerobic, anoxic/anaerobic strategy for maintaining the activity of activated sludge performing biological nitrogen and phosphorus removal during long-term starvation is investigated. A lab-scale sequencing batch reactor (SBR) treating abattoir wastewater and achieving high-levels (>95%) of nitrogen, phosphorus and COD removal was used. The reactor was put twice into a so-called "sleeping mode" for a period of 5-6 weeks when the abattoir, where the wastewater was sourced, was closed down for annual maintenance. The "sleeping mode" operation consisted of 15 min aeration in a 6 h SBR cycle. The sludge was allowed to settle in the remaining time of the cycle. The decay rates for ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) were determined to be 0.017 and 0.004 d(-1), respectively. These decay rates correlated well with AOB and NOB population quantified using molecular techniques (FISH). There was negligible phosphate accumulation in the reactor during the first 1-2 weeks of starvation, which was followed by a linear net release of phosphate in the remaining 4-5 weeks at a very slow rate of 1-2 mgP gVSS(-1)d(-1). A sudden decrease in the aerobic activities of polyphosphate accumulating organisms (PAOs), observed via anaerobic/aerobic batch tests, occurred after 2 weeks of starvation. This correlated with a dramatic increase of several metal ions in the liquid phase. The underlying reasons are not clear. A resuscitation period with a gradual increase of the wastewater load was applied during the re-startup of the reactor after both "sleeping mode" periods. Each time, the performance of the reactor in terms of nitrogen and phosphorus removal fully recovered in 4 days.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Water Research
    Article . 2007
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    56
    citations56
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Water Research
      Article . 2007
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Dutta, Paritam K.; Keller, Jurg; Yuan, Zhiguo; Rozendal, Rene A.; +1 Authors

    The treatment of wastewater containing sulfides in bioelec-trochemical systems (BES) causes deposition of sulfur on the anode as a result of a solely electrochemical process. In this study, we investigate whether microorganisms can use this sulfur, ratherthan the anode or soluble sulfate, as an electron acceptor for the oxidation of acetate. Our results indicate that microorganisms use electrodeposited sulfur as preferable electron acceptor over the anode and sulfate and produce sulfide irrespective of electrochemical conditions. Bioelectrochemical and biological sulfide generation pathways were studied under different electrochemical conditions. The obtained results show that the sulfide generation rate at open circuit condition (anode potential -235 +/- 5 mV versus standard hydrogen electrode, SHE)was higher in comparison to the electrochemical sulfide generation even at a lower potential of -275 mV (vs SHE), confirming that sulfide is produced through biological processes without any current generation. However, during closed circuit operation, the overall Coulombic efficiency (97% +/- 2%) is not affected as the produced sulfide (originating from the reduction of deposited sulfur) is spontaneously reoxidized to sulfur when a favorable potential is maintained. This confirms the mediator role of sulfur during acetate oxidation in BES. A diagrammatic representation of the mechanism is proposed to characterize the interactions between acetate oxidation and sulfur conversions on the anode.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    66
    citations66
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vanhooren, H; Yuan, Z; Vanrolleghem, PA;

    We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science and Te...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water Science and Technology
    Article . 2002 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science and Te...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water Science and Technology
      Article . 2002 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhou, Yan; Pijuan, Maite; Zeng, Raymond J.; Yuan, Zhiguo;

    For decades, glycolysis has been generally accepted to supply the reducing power for the anaerobic conversion of volatile fatty acids (VFAs) to polyhydroxyalkanoates (PHAs) by polyphosphate accumulating organisms (PAOs). However, the importance of the tricarboxylic acid (TCA) cycle has also been raised since 1980s. The aim of this study is to demonstrate the involvement of the TCA cycle in the anaerobic metabolism of PAOs. To achieve this goal, the glycogen pool of an activated sludge highly enriched in Candidatus Accumulibacter Phosphatis (hereafter referred to as Accumulibacter), a putative PAO was reduced substantially through starving the sludge under intermittent anaerobic and aerobic conditions. After the starvation, acetate added was still taken up anaerobically and stored as PHA, with negligible glycogen degradation. The metabolic models proposed by Pereira, Hesselmann and Yagci, which predict the formation of reducing power through glycolysis and the full or partial TCA cycle, were used to estimate the carbon fluxes. The results demonstrate that Accumulibacter can use both glycogen and acetate to generate reducing power anaerobically. The anaerobic production of reducing power from acetate is likely through the full TCA cycle. The proportion of TCA cycle involvement depends on the availability of degradable glycogen.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Water Research
    Article . 2009
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    77
    citations77
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Water Research
      Article . 2009
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.