- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
Country
Language
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Funded by:UKRI | EV Fleet-Centred Local En..., UKRI | Digital Designer Robot: A...UKRI| EV Fleet-Centred Local Energy System ,UKRI| Digital Designer Robot: Assisted Self-Service Design For Customers In Bespoke ManufacturingXiangyu Kong; Siqiong Zhang; Bowei Sun; Qun Yang; Shupeng Li; Shijian Zhu;doi: 10.3390/en13112790
With the development of smart devices and information technology, it is possible for users to optimize their usage of electrical equipment through the home energy management system (HEMS). To solve the problems of daily optimal scheduling and emergency demand response (DR) in an uncertain environment, this paper provides an opportunity constraint programming model for the random variables contained in the constraint conditions. Considering the probability distribution of the random variables, a home energy management method for DR based on chance-constrained programming is proposed. Different confidence levels are set to reflect the influence mechanism of random variables on constraint conditions. An improved particle swarm optimization algorithm is used to solve the problem. Finally, the demand response characteristics in daily and emergency situations are analyzed by simulation examples, and the effectiveness of the method is verified.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2790/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2790/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Authors: Xiangyu Kong; Jingtao Yao; Zhijun E; Xin Wang;doi: 10.3390/en12132492
In generation expansion planning, sustainable generation expansion planning is gaining more and more attention. Based on the comprehensive consideration of generation expansion planning economics, technology, environment, and other fields, this paper analyzes the sustainable development of power supply planning evaluation indicators and builds a multi-objective generation expansion planning decision model considering sustainable development. According to the target variables in the model, the variables such as attribute variables are divided into different subsets, and the logical relationship analysis method between different nodes is obtained based on Dynamic Bayesian network theory, which reduces the complexity of the planning model problem. The application examples show the feasibility and effectiveness of the proposed model and the solution method.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2492/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2492/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Zhida Zhao; Hao Yu; Peng Li; Peng Li; Xiangyu Kong; Jianzhong Wu; Chengshan Wang;With the expansion in scale and complexity of distribution networks, distributed state estimation (DSE), a real-time database for other on-line applications, is becoming popular for large-scale active distribution networks (ADN). Measurements from phasor measurement units (PMUs) with the same time stamp can assist DSE to obtain faster and more accurate estimation; however, the configuration of PMUs and communication links should be updated to support data collection and transmission. This paper proposes an optimal PMUs and communication links placement method for DSE in distribution networks. A network partitioning method is presented with the aim of balancing calculation times among subareas. Then, a binary integer linear programming model that simultaneously considers the optimal placement of PMUs, phasor data concentrators (PDCs) and communication links is proposed. The economy of the configuration scheme is guaranteed on the premise that the network is fully observable. Finally, case studies on the IEEE 33-node, PG&E 69-node and IEEE 123-node systems verify the feasibility of the proposed method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Xiangyu Kong; Chuang Li; Chengshan Wang; Yusen Zhang; Jian Zhang;Abstract Accurate short-term load forecasting (STLF) is an important basis for daily dispatching of the power grid, but the non-stationary characteristics of the load series add to the challenge of this task. Many researchers have been working to improve the accuracy and speed of forecasting models, but stability is equally important. This paper develops a forecasting method based on error correction using dynamic mode decomposition (DMD) for STLF, including data selection, error forecasting, and error correction. In the data selection stage, three types of data are selected as input data of the model, including previous day data, same day data in previous week and similar day data obtained by grey relational analysis (GRA). In the error forecasting stage, the data driving characteristics of the DMD algorithm is used to capture the potential spatiotemporal dynamics of error series, thereby realizing the error forecasting. In the error correction stage, on the basis of combining the forecasting results of load and error, an extreme value constraint method (EVCM) is developed to further correct the load demand series. Based on the load data of different regions, this paper selects different performance indicators, such as MAPE, MAE, RMSE, Variance and direction accuracy (DA), to prove that the proposed method has the advantages of accuracy and stability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Xiangyu Kong; Jie Xiao; Chengshan Wang; Kai Cui; Qiang Jin; Deqian Kong;Abstract With the development of energy internet and power market, the operation regulation and pricing mechanism of traditional virtual power plants are improved to adapt to the new environment. In this paper, a bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant is proposed to provide a framework for solving the interest distribution between operators and optimal scheduling problems of multiple-operator virtual power plant. An operator power allocation and internal electricity price formation method based on bidding equilibrium is proposed in the upper level, which introduces the fluctuation cost coefficient to express the influence of the uncertainty of renewable energy power generation on the bidding process. A multi-time scale optimal scheduling method combining scheduling model and adjustment strategy is established in the lower level. A default penalty mechanism in the scheduling model is used to ensure that operators provide the electricity allocated from the bidding process and considering the influence of demand response based on internal electricity price on adjustment strategy. Simulation results show that the proposed method can realize the optimal distribution of operators’ power generation and form the internal electricity price that reflects the internal supply and demand level of virtual power plant. Besides, it can reduce the impact of uncertainty on dispatching results and improve the application range of virtual power plant to enhance the competitiveness of virtual power plant in market transactions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xiangyu Kong; Xiaopeng Zhang; Ning Lu; Yuying Ma; Ye Li;This paper presents an online smart meter measurement error estimation algorithm. Extended Kalman filter (EKF) and limit memory recursive least square (LMRLS) methods are used for remote calibration of a large amount of user-side smart meters. Then, a modified joint estimation model is obtained by selecting the estimation step that conforms to the actual working condition and filtering the abnormal estimation value according to the line loss rate characteristics. Finally, based on the experimental data obtained by the program-controlled load simulation system, the precision of metering error estimation is verified. The results show that the method improves the precision of error estimation by analyzing the coupling between line loss rates and metering error estimation. By using the limited memory RLS algorithm, the influence of old measured data on error parameter estimation is reduced so that new data can be added to correct error parameter estimation to enhance the precision of the real-time smart meter error estimation.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xiangyu Kong; Chuang Li; Feng Zheng; Chengshan Wang;Demand-side management (DSM) increases the complexity of forecasting environment, which makes traditional forecasting methods difficult to meet the firm's need for predictive accuracy. Since deep learning can comprehensively consider various factors to improve prediction results, this paper improves the deep belief network from three aspects of input data, model and performance, and uses it to solve the short-term load forecasting problem in DSM. In the data optimization stage, the Hankel matrix is constructed to increase the input weight of DSM data, and the gray relational analysis is used to select strongly correlated data from the data set. In the model optimization stage, the Gauss-Bernoulli restricted Boltzmann machine is used as the first restricted Boltzmann machine of the deep network to convert the continuity feature of input data into binomial distribution feature. In the performance optimization stage, a pre-training method combining error constraint and unsupervised learning is proposed to provide good initial parameters, and the global fine-tuning of network parameters is realized based on the genetic algorithm. Based on the actual data of Tianjin Power Grid in China, the experimental results show that the proposed method is superior to other methods.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xiangyu Kong; Bowei Sun; Jian Zhang; Shupeng Li; Qun Yang;Thermostatically controlled loads (TCLs) have become a major tool for the demand response (DR) program when air conditioners cause peak loads in a day during the winter or summer. To solve the problem of a direct load control with TCL usually affecting user comfort and hardly considering responsiveness, a power retailer air-conditioning load aggregation operation control and demand response method was proposed in this research. From the perspective of a power retailer, a compensation mechanism for TCL was constructed, which was composed of a basic incentive program and an additional incentive program. The basic incentive program aimed to encourage users with a low response degree to increase the response capacity in order to participate in DR. An auxiliary service market control strategy based on a new compensation mechanism of the electricity retailer was detailed, which fully considered the enthusiasm of the user in mobilizing the response and reducing the load reduction fluctuation when using the state-queuing (SQ) model. Case studies were provided to verify the effectiveness of the proposed method. Compared with other compensation schemes, the simulation results showed that the compensation mechanism provided in this research was more reasonable, and it could smooth the load and reduce fluctuations. The compensation distribution among the user groups could effectively control the uniform distribution in the user groups in the temperature range, and it could mobilize users at different temperatures to participate in DR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Other literature type 2019Publisher:MDPI AG Xiangyu Kong; Yuying Ma; Xin Zhao; Ye Li; Yongxing Teng;In view of the existing verification methods of electric meters, there are problems such as high maintenance cost, poor accuracy, and difficulty in full coverage, etc. Starting from the perspective of analyzing the large-scale measured data collected by user-side electric meters, an online estimation method for the operating error of electric meters was proposed, which uses the recursive least squares (RLS) and introduces a double-parameter method with dynamic forgetting factors λa and λb to track the meter parameters changes in real time. Firstly, the obtained measured data are preprocessed, and the abnormal data such as null data and light load data are eliminated by an appropriate clustering method, so as to screen out the measured data of the similar operational states of each user. Then equations relating the head electric meter in the substation and each users’ electric meter and line loss based on the law of conservation of electric energy are established. Afterwards, the recursive least squares algorithm with double-parameter is used to estimate the parameters of line loss and the electric meter error. Finally, the effects of double dynamic forgetting factors, double constant forgetting factors and single forgetting factor on the accuracy of estimated error of electric meter are discussed. Through the program-controlled load simulation system, the proposed method is verified with higher accuracy and practicality.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/5/805/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.37247/aer.1...Part of book or chapter of book . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/5/805/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.37247/aer.1...Part of book or chapter of book . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Yuxiang Peng; Wenqian Jiang; Xingqiu Wei; Juntao Pan; Xiangyu Kong; Zhou Yang;A microgrid cluster is composed of multiple interconnected microgrids and operates in the form of cluster, which can realize energy complementation between microgrids and significantly improve their renewable energy consumption capacity and system operation reliability. A microgrid optimal dispatch based on a distributed economic model predictive control algorithm is proposed in this paper. Firstly, the control task of the microgrid power generation system is defined, which is required to meet the load demand while reducing the economic loss of the system and realize dynamic economic optimization. The global objective function is designed based on the control task, and the detailed design method of the distributed economic model predictive controller is given. The control law is obtained by an iterative calculation using the Nash optimal method, which can effectively reduce the amount of data in the communication network. Finally, a microgrid group composed of four microgrids is used as an example for simulation verification. The simulation results show that the distributed economic model predictive control algorithm proposed in this paper has good economic benefits for microgrid dispatching.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4658/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4658/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Funded by:UKRI | EV Fleet-Centred Local En..., UKRI | Digital Designer Robot: A...UKRI| EV Fleet-Centred Local Energy System ,UKRI| Digital Designer Robot: Assisted Self-Service Design For Customers In Bespoke ManufacturingXiangyu Kong; Siqiong Zhang; Bowei Sun; Qun Yang; Shupeng Li; Shijian Zhu;doi: 10.3390/en13112790
With the development of smart devices and information technology, it is possible for users to optimize their usage of electrical equipment through the home energy management system (HEMS). To solve the problems of daily optimal scheduling and emergency demand response (DR) in an uncertain environment, this paper provides an opportunity constraint programming model for the random variables contained in the constraint conditions. Considering the probability distribution of the random variables, a home energy management method for DR based on chance-constrained programming is proposed. Different confidence levels are set to reflect the influence mechanism of random variables on constraint conditions. An improved particle swarm optimization algorithm is used to solve the problem. Finally, the demand response characteristics in daily and emergency situations are analyzed by simulation examples, and the effectiveness of the method is verified.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2790/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2790/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Authors: Xiangyu Kong; Jingtao Yao; Zhijun E; Xin Wang;doi: 10.3390/en12132492
In generation expansion planning, sustainable generation expansion planning is gaining more and more attention. Based on the comprehensive consideration of generation expansion planning economics, technology, environment, and other fields, this paper analyzes the sustainable development of power supply planning evaluation indicators and builds a multi-objective generation expansion planning decision model considering sustainable development. According to the target variables in the model, the variables such as attribute variables are divided into different subsets, and the logical relationship analysis method between different nodes is obtained based on Dynamic Bayesian network theory, which reduces the complexity of the planning model problem. The application examples show the feasibility and effectiveness of the proposed model and the solution method.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2492/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2492/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Zhida Zhao; Hao Yu; Peng Li; Peng Li; Xiangyu Kong; Jianzhong Wu; Chengshan Wang;With the expansion in scale and complexity of distribution networks, distributed state estimation (DSE), a real-time database for other on-line applications, is becoming popular for large-scale active distribution networks (ADN). Measurements from phasor measurement units (PMUs) with the same time stamp can assist DSE to obtain faster and more accurate estimation; however, the configuration of PMUs and communication links should be updated to support data collection and transmission. This paper proposes an optimal PMUs and communication links placement method for DSE in distribution networks. A network partitioning method is presented with the aim of balancing calculation times among subareas. Then, a binary integer linear programming model that simultaneously considers the optimal placement of PMUs, phasor data concentrators (PDCs) and communication links is proposed. The economy of the configuration scheme is guaranteed on the premise that the network is fully observable. Finally, case studies on the IEEE 33-node, PG&E 69-node and IEEE 123-node systems verify the feasibility of the proposed method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Xiangyu Kong; Chuang Li; Chengshan Wang; Yusen Zhang; Jian Zhang;Abstract Accurate short-term load forecasting (STLF) is an important basis for daily dispatching of the power grid, but the non-stationary characteristics of the load series add to the challenge of this task. Many researchers have been working to improve the accuracy and speed of forecasting models, but stability is equally important. This paper develops a forecasting method based on error correction using dynamic mode decomposition (DMD) for STLF, including data selection, error forecasting, and error correction. In the data selection stage, three types of data are selected as input data of the model, including previous day data, same day data in previous week and similar day data obtained by grey relational analysis (GRA). In the error forecasting stage, the data driving characteristics of the DMD algorithm is used to capture the potential spatiotemporal dynamics of error series, thereby realizing the error forecasting. In the error correction stage, on the basis of combining the forecasting results of load and error, an extreme value constraint method (EVCM) is developed to further correct the load demand series. Based on the load data of different regions, this paper selects different performance indicators, such as MAPE, MAE, RMSE, Variance and direction accuracy (DA), to prove that the proposed method has the advantages of accuracy and stability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Xiangyu Kong; Jie Xiao; Chengshan Wang; Kai Cui; Qiang Jin; Deqian Kong;Abstract With the development of energy internet and power market, the operation regulation and pricing mechanism of traditional virtual power plants are improved to adapt to the new environment. In this paper, a bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant is proposed to provide a framework for solving the interest distribution between operators and optimal scheduling problems of multiple-operator virtual power plant. An operator power allocation and internal electricity price formation method based on bidding equilibrium is proposed in the upper level, which introduces the fluctuation cost coefficient to express the influence of the uncertainty of renewable energy power generation on the bidding process. A multi-time scale optimal scheduling method combining scheduling model and adjustment strategy is established in the lower level. A default penalty mechanism in the scheduling model is used to ensure that operators provide the electricity allocated from the bidding process and considering the influence of demand response based on internal electricity price on adjustment strategy. Simulation results show that the proposed method can realize the optimal distribution of operators’ power generation and form the internal electricity price that reflects the internal supply and demand level of virtual power plant. Besides, it can reduce the impact of uncertainty on dispatching results and improve the application range of virtual power plant to enhance the competitiveness of virtual power plant in market transactions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xiangyu Kong; Xiaopeng Zhang; Ning Lu; Yuying Ma; Ye Li;This paper presents an online smart meter measurement error estimation algorithm. Extended Kalman filter (EKF) and limit memory recursive least square (LMRLS) methods are used for remote calibration of a large amount of user-side smart meters. Then, a modified joint estimation model is obtained by selecting the estimation step that conforms to the actual working condition and filtering the abnormal estimation value according to the line loss rate characteristics. Finally, based on the experimental data obtained by the program-controlled load simulation system, the precision of metering error estimation is verified. The results show that the method improves the precision of error estimation by analyzing the coupling between line loss rates and metering error estimation. By using the limited memory RLS algorithm, the influence of old measured data on error parameter estimation is reduced so that new data can be added to correct error parameter estimation to enhance the precision of the real-time smart meter error estimation.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xiangyu Kong; Chuang Li; Feng Zheng; Chengshan Wang;Demand-side management (DSM) increases the complexity of forecasting environment, which makes traditional forecasting methods difficult to meet the firm's need for predictive accuracy. Since deep learning can comprehensively consider various factors to improve prediction results, this paper improves the deep belief network from three aspects of input data, model and performance, and uses it to solve the short-term load forecasting problem in DSM. In the data optimization stage, the Hankel matrix is constructed to increase the input weight of DSM data, and the gray relational analysis is used to select strongly correlated data from the data set. In the model optimization stage, the Gauss-Bernoulli restricted Boltzmann machine is used as the first restricted Boltzmann machine of the deep network to convert the continuity feature of input data into binomial distribution feature. In the performance optimization stage, a pre-training method combining error constraint and unsupervised learning is proposed to provide good initial parameters, and the global fine-tuning of network parameters is realized based on the genetic algorithm. Based on the actual data of Tianjin Power Grid in China, the experimental results show that the proposed method is superior to other methods.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xiangyu Kong; Bowei Sun; Jian Zhang; Shupeng Li; Qun Yang;Thermostatically controlled loads (TCLs) have become a major tool for the demand response (DR) program when air conditioners cause peak loads in a day during the winter or summer. To solve the problem of a direct load control with TCL usually affecting user comfort and hardly considering responsiveness, a power retailer air-conditioning load aggregation operation control and demand response method was proposed in this research. From the perspective of a power retailer, a compensation mechanism for TCL was constructed, which was composed of a basic incentive program and an additional incentive program. The basic incentive program aimed to encourage users with a low response degree to increase the response capacity in order to participate in DR. An auxiliary service market control strategy based on a new compensation mechanism of the electricity retailer was detailed, which fully considered the enthusiasm of the user in mobilizing the response and reducing the load reduction fluctuation when using the state-queuing (SQ) model. Case studies were provided to verify the effectiveness of the proposed method. Compared with other compensation schemes, the simulation results showed that the compensation mechanism provided in this research was more reasonable, and it could smooth the load and reduce fluctuations. The compensation distribution among the user groups could effectively control the uniform distribution in the user groups in the temperature range, and it could mobilize users at different temperatures to participate in DR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Other literature type 2019Publisher:MDPI AG Xiangyu Kong; Yuying Ma; Xin Zhao; Ye Li; Yongxing Teng;In view of the existing verification methods of electric meters, there are problems such as high maintenance cost, poor accuracy, and difficulty in full coverage, etc. Starting from the perspective of analyzing the large-scale measured data collected by user-side electric meters, an online estimation method for the operating error of electric meters was proposed, which uses the recursive least squares (RLS) and introduces a double-parameter method with dynamic forgetting factors λa and λb to track the meter parameters changes in real time. Firstly, the obtained measured data are preprocessed, and the abnormal data such as null data and light load data are eliminated by an appropriate clustering method, so as to screen out the measured data of the similar operational states of each user. Then equations relating the head electric meter in the substation and each users’ electric meter and line loss based on the law of conservation of electric energy are established. Afterwards, the recursive least squares algorithm with double-parameter is used to estimate the parameters of line loss and the electric meter error. Finally, the effects of double dynamic forgetting factors, double constant forgetting factors and single forgetting factor on the accuracy of estimated error of electric meter are discussed. Through the program-controlled load simulation system, the proposed method is verified with higher accuracy and practicality.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/5/805/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.37247/aer.1...Part of book or chapter of book . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/5/805/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.37247/aer.1...Part of book or chapter of book . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Yuxiang Peng; Wenqian Jiang; Xingqiu Wei; Juntao Pan; Xiangyu Kong; Zhou Yang;A microgrid cluster is composed of multiple interconnected microgrids and operates in the form of cluster, which can realize energy complementation between microgrids and significantly improve their renewable energy consumption capacity and system operation reliability. A microgrid optimal dispatch based on a distributed economic model predictive control algorithm is proposed in this paper. Firstly, the control task of the microgrid power generation system is defined, which is required to meet the load demand while reducing the economic loss of the system and realize dynamic economic optimization. The global objective function is designed based on the control task, and the detailed design method of the distributed economic model predictive controller is given. The control law is obtained by an iterative calculation using the Nash optimal method, which can effectively reduce the amount of data in the communication network. Finally, a microgrid group composed of four microgrids is used as an example for simulation verification. The simulation results show that the distributed economic model predictive control algorithm proposed in this paper has good economic benefits for microgrid dispatching.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4658/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4658/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
