- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Australia, United Kingdom, United Kingdom, Austria, France, United Kingdom, FrancePublisher:American Geophysical Union (AGU) Funded by:UKRI | FACCE MACSUR Knowledge Hu...UKRI| FACCE MACSUR Knowledge Hub Crop modellingLaixiang Sun; Laixiang Sun; Laixiang Sun; Bing Chen; Tingting Fan; Lindsay Lee; Sat Ghosh; Kuishuang Feng; Ann-Kristin Koehler; Yao Gao; Andrew J. Challinor; Andrew J. Challinor; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; James E. M. Watson; Yan Yin; Huiyi Yang; Huiyi Yang; S. Dobbie;AbstractGeoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop‐climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77800Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77800Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, United Kingdom, FrancePublisher:Wiley Authors: Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Carlos E. Navarro-Racines; +8 AuthorsJulian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Carlos E. Navarro-Racines; Flavio Breseghello; Tao Li; Adriano Pereira de Castro; Alexandre Bryan Heinemann; Maria Camila Rebolledo; Maria Camila Rebolledo; Andrew J. Challinor; Andrew J. Challinor;AbstractRice is the most important food crop in the developing world. For rice production systems to address the challenges of increasing demand and climate change, potential and on‐farm yield increases must be increased. Breeding is one of the main strategies toward such aim. Here, we hypothesize that climatic and atmospheric changes for the upland rice growing period in central Brazil are likely to alter environment groupings and drought stress patterns by 2050, leading to changing breeding targets during the 21st century. As a result of changes in drought stress frequency and intensity, we found reductions in productivity in the range of 200–600 kg/ha (up to 20%) and reductions in yield stability throughout virtually the entire upland rice growing area (except for the southeast). In the face of these changes, our crop simulation analysis suggests that the current strategy of the breeding program, which aims at achieving wide adaptation, should be adjusted. Based on the results for current and future climates, a weighted selection strategy for the three environmental groups that characterize the region is suggested. For the highly favorable environment (HFE, 36%–41% growing area, depending on RCP), selection should be done under both stress‐free and terminal stress conditions; for the favorable environment (FE, 27%–40%), selection should aim at testing under reproductive and terminal stress, and for the least favorable environment (LFE, 23%–27%), selection should be conducted for response to reproductive stress only and for the joint occurrence of reproductive and terminal stress. Even though there are differences in timing, it is noteworthy that stress levels are similar across environments, with 40%–60% of crop water demand unsatisfied. Efficient crop improvement targeted toward adaptive traits for drought tolerance will enhance upland rice crop system resilience under climate change.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/90997Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/90997Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 FrancePublisher:IOP Publishing Authors: Andrew J. Challinor; Andrew J. Challinor; Philip K. Thornton; Philip K. Thornton; +5 AuthorsAndrew J. Challinor; Andrew J. Challinor; Philip K. Thornton; Philip K. Thornton; Andy Jarvis; Andy Jarvis; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas;handle: 10568/28987
Les modèles climatiques mondiaux (MCG) sont devenus de plus en plus importants pour la science du changement climatique et constituent la base de la plupart des études d'impact. Étant donné que les modèles d'impact sont très sensibles aux données climatiques d'entrée, les compétences en GCM sont cruciales pour obtenir de meilleures perspectives à court, moyen et long terme pour la production agricole et la sécurité alimentaire. L'ensemble de la phase 5 du projet d'intercomparaison de modèles couplés (CMIP) est susceptible de sous-tendre la majorité des évaluations d'impact climatique au cours des prochaines années. Nous évaluons 24 simulations CMIP3 et 26 CMIP5 du climat actuel par rapport aux observations climatiques pour cinq régions tropicales, ainsi que les améliorations régionales des compétences des modèles et, par le biais d'une revue de la littérature, les sensibilités des estimations d'impact aux erreurs des modèles. Les moyennes climatologiques des températures moyennes saisonnières représentent des erreurs moyennes entre 1 et 18 ° C (2-130% par rapport à la moyenne), tandis que les précipitations saisonnières et la fréquence des jours humides représentent des erreurs plus importantes, compensant souvent les moyennes observées et la variabilité au-delà de 100%. La variabilité climatique interannuelle simulée dans les MCG mérite une attention particulière, étant donné qu'aucun MCG ne correspond aux observations dans plus de 30 % des zones pour les précipitations mensuelles et la fréquence des jours humides, 50 % pour la plage diurne et 70 % pour les températures moyennes. Nous rapportons des améliorations des compétences climatiques moyennes de 5 à 15 % pour les températures moyennes climatologiques, de 3 à 5 % pour la plage diurne et de 1 à 2 % pour les précipitations. À ces taux d'amélioration, nous estimons qu'au moins 5 à 30 ans de travail du CMIP sont nécessaires pour améliorer les simulations régionales de température et au moins 30 à 50 ans pour les simulations de précipitations, pour que celles-ci soient directement entrées dans les modèles d'impact. Nous concluons avec quelques recommandations pour l'utilisation de CMIP5 dans les études d'impact agricole. Los modelos climáticos globales (GCM) se han vuelto cada vez más importantes para la ciencia del cambio climático y proporcionan la base para la mayoría de los estudios de impacto. Dado que los modelos de impacto son muy sensibles a los datos climáticos de entrada, la habilidad del GCM es crucial para obtener mejores perspectivas a corto, mediano y largo plazo para la producción agrícola y la seguridad alimentaria. Es probable que el conjunto de fase 5 del Proyecto de Intercomparación de Modelos Acoplados (CMIP) sustente la mayoría de las evaluaciones de impacto climático en los próximos años. Evaluamos 24 simulaciones CMIP3 y 26 CMIP5 del clima actual contra las observaciones climáticas para cinco regiones tropicales, así como las mejoras regionales en la habilidad del modelo y, a través de la revisión de la literatura, las sensibilidades de las estimaciones de impacto al error del modelo. Las medias climatológicas de las temperaturas medias estacionales muestran errores medios entre 1 y 18 °C (2-130% con respecto a la media), mientras que las precipitaciones estacionales y la frecuencia de los días húmedos muestran errores mayores, que a menudo compensan las medias observadas y la variabilidad más allá del 100%. La variabilidad climática interanual simulada en los mcg merece especial atención, dado que ningún mcg coincide con lo observado en más del 30% de las áreas para la precipitación mensual y la frecuencia de los días húmedos, el 50% para el rango diurno y el 70% para las temperaturas medias. Reportamos mejoras en la habilidad climática media de 5–15% para las temperaturas medias climatológicas, 3–5% para el rango diurno y 1–2% en la precipitación. A estas tasas de mejora, estimamos que se requieren al menos 5–30 años de trabajo de CMIP para mejorar las simulaciones de temperatura regionales y al menos 30–50 años para las simulaciones de precipitación, para que estas se ingresen directamente en los modelos de impacto. Concluimos con algunas recomendaciones para el uso de CMIP5 en estudios de impacto agrícola. Global climate models (GCMs) have become increasingly important for climate change science and provide the basis for most impact studies. Since impact models are highly sensitive to input climate data, GCM skill is crucial for getting better short-, medium- and long-term outlooks for agricultural production and food security. The Coupled Model Intercomparison Project (CMIP) phase 5 ensemble is likely to underpin the majority of climate impact assessments over the next few years. We assess 24 CMIP3 and 26 CMIP5 simulations of present climate against climate observations for five tropical regions, as well as regional improvements in model skill and, through literature review, the sensitivities of impact estimates to model error. Climatological means of seasonal mean temperatures depict mean errors between 1 and 18 ° C (2–130% with respect to mean), whereas seasonal precipitation and wet-day frequency depict larger errors, often offsetting observed means and variability beyond 100%. Simulated interannual climate variability in GCMs warrants particular attention, given that no single GCM matches observations in more than 30% of the areas for monthly precipitation and wet-day frequency, 50% for diurnal range and 70% for mean temperatures. We report improvements in mean climate skill of 5–15% for climatological mean temperatures, 3–5% for diurnal range and 1–2% in precipitation. At these improvement rates, we estimate that at least 5–30 years of CMIP work is required to improve regional temperature simulations and at least 30–50 years for precipitation simulations, for these to be directly input into impact models. We conclude with some recommendations for the use of CMIP5 in agricultural impact studies. أصبحت نماذج المناخ العالمي (GCMs) ذات أهمية متزايدة لعلوم تغير المناخ وتوفر الأساس لمعظم دراسات التأثير. نظرًا لأن نماذج التأثير حساسة للغاية لإدخال البيانات المناخية، فإن مهارة GCM ضرورية للحصول على توقعات أفضل على المدى القصير والمتوسط والطويل للإنتاج الزراعي والأمن الغذائي. من المرجح أن تدعم مجموعة المرحلة الخامسة من مشروع المقارنة بين النماذج المقترنة (CMIP) غالبية تقييمات التأثير المناخي على مدى السنوات القليلة المقبلة. نقوم بتقييم 24 محاكاة CMIP3 و 26 CMIP5 للمناخ الحالي مقابل ملاحظات المناخ لخمس مناطق استوائية، بالإضافة إلى التحسينات الإقليمية في مهارة النموذج، ومن خلال مراجعة الأدبيات، وحساسيات تقديرات التأثير لنمذجة الخطأ. تصور المتوسطات المناخية لمتوسط درجات الحرارة الموسمية أخطاء متوسطة تتراوح بين 1 و 18 درجة مئوية (2-130 ٪ فيما يتعلق بالمتوسط)، في حين أن هطول الأمطار الموسمي وتردد اليوم الرطب يصور أخطاء أكبر، وغالبًا ما تعوض الوسائل المرصودة والتباين الذي يتجاوز 100 ٪. تستدعي محاكاة تقلبات المناخ بين السنوات في GCMs اهتمامًا خاصًا، نظرًا لأنه لا يوجد GCM واحد يطابق الملاحظات في أكثر من 30 ٪ من المناطق لهطول الأمطار الشهرية وتردد اليوم الرطب، و 50 ٪ للنطاق النهاري و 70 ٪ لدرجات الحرارة المتوسطة. نبلغ عن تحسينات في متوسط المهارة المناخية بنسبة 5-15 ٪ لدرجات الحرارة المتوسطة المناخية، و 3-5 ٪ للنطاق النهاري و 1-2 ٪ في هطول الأمطار. بمعدلات التحسن هذه، نقدر أن هناك حاجة إلى ما لا يقل عن 5–30 عامًا من العمل في CMIP لتحسين محاكاة درجة الحرارة الإقليمية وما لا يقل عن 30–50 عامًا لمحاكاة هطول الأمطار، حتى يتم إدخالها مباشرة في نماذج التأثير. نختتم ببعض التوصيات لاستخدام CMIP5 في دراسات الأثر الزراعي.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2013License: CC BYFull-Text: https://hdl.handle.net/10568/28987Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2013License: CC BYFull-Text: https://hdl.handle.net/10568/28987Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, France, FrancePublisher:Elsevier BV Leonardo Ordoñez; Eliana Vallejo; Daniel Amariles; Jeison Mesa; Alejandra Esquivel; Lizeth Llanos-Herrera; Steven D. Prager; Cristian Camilo Segura; Jhon Jairo Valencia; Carmen Julio Duarte; Diana Carolina Rojas; Diego Obando; Julián Ramírez-Villegas;handle: 10568/127886
La variabilité climatique affecte la production végétale de manière multiple et souvent complexe. Le développement et l'utilisation de cultures hybrides avec une plus grande productivité et une plus grande tolérance aux chocs climatiques est l'une des approches de l'adaptation au climat et de l'intensification agricole. Étant donné que les cultures hybrides sont plus chères pour le producteur, la gestion des risques est d'une importance primordiale. Ici, nous posons qu'il existe un fort potentiel pour le secteur colombien du maïs d'utiliser les services climatiques spécifiques aux cultures pour la réduction des risques. Nous avons utilisé le modèle de culture CERES-Maize connecté aux prévisions climatiques saisonnières développées via l'analyse de corrélation canonique (ACC) dans les principales zones de culture du maïs en Colombie pour évaluer la performance d'une prévision agroclimatique spécifique au maïs afin d'éclairer deux décisions clés, à savoir le choix des dates de semis et des génotypes. Nous constatons que les modèles agroclimatiques fonctionnent bien dans les catégories de rendement discriminantes (supérieures, inférieures et normales) avec une capacité de discrimination allant jusqu'à 70–80 % pour les catégories « inférieures à la normale » et « supérieures + inférieures à la normale ». Conformément à cela, les prévisions agroclimatiques prédisent généralement la date de plantation optimale avec une erreur de 3 pentades ou moins. Ils prédisent également le choix optimal du génotype correctement environ 50 à 70 % du temps en fonction du site ou de la saison d'intérêt. Nous identifions notamment des cas spécifiques dans lesquels les prévisions agroclimatiques sont trompeuses, mais nous soutenons que la valeur globale des prévisions l'emporte sur ces cas. Les travaux futurs devraient se concentrer sur l'élargissement de la portée de la prévision agroclimatique pour inclure d'autres décisions agricoles pertinentes qui sont influencées par le climat, et sur l'amélioration des performances des prévisions climatiques. La variabilidad climática afecta a la producción de cultivos de múltiples y a menudo complejas maneras. El desarrollo y uso de cultivos híbridos con mayor productividad y tolerancia a los choques climáticos es uno de los enfoques para la adaptación climática y la intensificación agrícola. Dado que los cultivos híbridos son más caros para el productor, la gestión de riesgos es de suma importancia. Aquí, planteamos que existe un alto potencial para que el sector colombiano del maíz utilice servicios climáticos específicos de cultivos para la reducción de riesgos. Utilizamos el modelo de cultivo CERES-Maize conectado a los pronósticos climáticos estacionales desarrollados a través del Análisis de Correlación Canónica (CCA) en áreas clave de cultivo de maíz en Colombia para evaluar el desempeño de un pronóstico agroclimático específico del maíz para informar dos decisiones clave, a saber, la elección de las fechas de siembra y los genotipos. Encontramos que los modelos agroclimáticos se desempeñan bien en la discriminación de categorías de rendimiento (por encima, por debajo y normal) con una capacidad de discriminación de hasta el 70–80 % para las categorías "por debajo de lo normal" y "por encima + por debajo de lo normal". De acuerdo con esto, los pronósticos agroclimáticos generalmente predicen la fecha óptima de siembra con un error de 3 pentadas o menos. También predicen la elección óptima del genotipo correctamente alrededor del 50-70% del tiempo dependiendo del sitio o la temporada de interés. En particular, identificamos casos específicos en los que el pronóstico agroclimático es engañoso, pero argumentamos que el valor general de los pronósticos supera estos casos. El trabajo futuro debe centrarse en ampliar el alcance de la predicción agroclimática para incluir otras decisiones agrícolas relevantes que están influenciadas por el clima, y en la mejora del desempeño del pronóstico climático. Climate variability affects crop production in multiple and often complex ways. The development and use hybrid crops with greater productivity and tolerance to climate shocks is one of the approaches to climate adaptation and agricultural intensification. Since hybrid crops are more expensive for the producer, risk management is of paramount importance. Here, we pose that there is high potential for the Colombian maize sector to use crop-specific climate services for risk reduction. We used the CERES-Maize crop model connected to seasonal climate forecasts developed via Canonical Correlation Analysis (CCA) across key maize growing areas in Colombia to assess the performance of a maize-specific agroclimatic forecast to inform two key decisions, namely, the choice of sowing dates and genotypes. We find that the agroclimatic models perform well at discriminating yield categories (above, below, and normal) with discrimination capacity of up to 70–80 % for the 'below normal' and 'above + below normal' categories. Consistent with this, agroclimatic forecasts typically predict the optimal planting date with an error of 3 pentads or less. They also predict the optimal choice of genotype correctly around 50–70 % of the time depending on the site or season of interest. Notably, we identify specific cases in which the agroclimatic forecast is misleading but argue that the overall value of the forecasts outweighs these cases. Future work should focus on expanding the scope of the agroclimatic prediction to include other relevant farming decisions that are influenced by climate, and on the improvement of climate forecast performance. يؤثر تقلب المناخ على إنتاج المحاصيل بطرق متعددة ومعقدة في كثير من الأحيان. يعد تطوير واستخدام المحاصيل الهجينة ذات الإنتاجية الأكبر والتسامح مع الصدمات المناخية أحد مناهج التكيف مع المناخ والتكثيف الزراعي. نظرًا لأن المحاصيل الهجينة أكثر تكلفة للمنتج، فإن إدارة المخاطر ذات أهمية قصوى. هنا، نطرح أن هناك إمكانات عالية لقطاع الذرة الكولومبي لاستخدام الخدمات المناخية الخاصة بالمحاصيل للحد من المخاطر. استخدمنا نموذج المحاصيل CERES - Maize المرتبط بالتنبؤات المناخية الموسمية التي تم تطويرها عبر تحليل الارتباط الكنسي (CCA) عبر مناطق زراعة الذرة الرئيسية في كولومبيا لتقييم أداء التوقعات المناخية الزراعية الخاصة بالذرة لإبلاغ قرارين رئيسيين، وهما اختيار تواريخ البذر والأنماط الجينية. نجد أن النماذج المناخية الزراعية تؤدي أداءً جيدًا في فئات الغلة التمييزية (فوق، تحت، وطبيعية) مع قدرة تمييزية تصل إلى 70–80 ٪ للفئات "أقل من المعتاد" و "أعلى + أقل من المعتاد". وتماشياً مع ذلك، تتنبأ التنبؤات المناخية الزراعية عادةً بتاريخ الزراعة الأمثل مع وجود خطأ قدره 3 خماسيات أو أقل. كما يتنبأون بالاختيار الأمثل للنمط الجيني بشكل صحيح حوالي 50–70 ٪ من الوقت اعتمادًا على الموقع أو موسم الاهتمام. والجدير بالذكر أننا نحدد حالات محددة تكون فيها التوقعات المناخية الزراعية مضللة ولكننا نجادل بأن القيمة الإجمالية للتوقعات تفوق هذه الحالات. يجب أن يركز العمل المستقبلي على توسيع نطاق التنبؤ بالمناخ الزراعي ليشمل القرارات الزراعية الأخرى ذات الصلة التي تتأثر بالمناخ، وعلى تحسين أداء التنبؤ بالمناخ.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127886Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127886Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 India, France, Netherlands, France, France, France, India, FrancePublisher:Wiley Authors: Roberto Quiroz; Roberto Quiroz; Alexandre Bryan Heinemann; Maria Camila Rebolledo; +22 AuthorsRoberto Quiroz; Roberto Quiroz; Alexandre Bryan Heinemann; Maria Camila Rebolledo; Maria Camila Rebolledo; Andrew J. Challinor; Sivakumar Sukumaran; Nickolai Alexandrov; Michel Edmond Ghanem; Philomin Juliana; Vincent Vadez; Jiankang Wang; Anabel Molero Milan; Zakaria Kehel; José Crossa; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Fred A. van Eeuwijk; Jeffrey W. White; Diego N. L. Pequeno; Jawoo Koo; Jana Kholova; Cécile Grenier; Cécile Grenier; Senthold Asseng; Matthew P. Reynolds;doi: 10.1002/csc2.20048
handle: 10568/108316
AbstractCrop improvement efforts aiming at increasing crop production (quantity, quality) and adapting to climate change have been subject of active research over the past years. But, the question remains ‘to what extent can breeding gains be achieved under a changing climate, at a pace sufficient to usefully contribute to climate adaptation, mitigation and food security?’. Here, we address this question by critically reviewing how model‐based approaches can be used to assist breeding activities, with particular focus on all CGIAR (formerly the Consultative Group on International Agricultural Research but now known simply as CGIAR) breeding programs. Crop modeling can underpin breeding efforts in many different ways, including assessing genotypic adaptability and stability, characterizing and identifying target breeding environments, identifying tradeoffs among traits for such environments, and making predictions of the likely breeding value of the genotypes. Crop modeling science within the CGIAR has contributed to all of these. However, much progress remains to be done if modeling is to effectively contribute to more targeted and impactful breeding programs under changing climates. In a period in which CGIAR breeding programs are undergoing a major modernization process, crop modelers will need to be part of crop improvement teams, with a common understanding of breeding pipelines and model capabilities and limitations, and common data standards and protocols, to ensure they follow and deliver according to clearly defined breeding products. This will, in turn, enable more rapid and better‐targeted crop modeling activities, thus directly contributing to accelerated and more impactful breeding efforts.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/108316Data sources: Bielefeld Academic Search Engine (BASE)Crop ScienceArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/108316Data sources: Bielefeld Academic Search Engine (BASE)Crop ScienceArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 NetherlandsPublisher:Elsevier BV Authors: Alimagham, Seyyedmajid; van Loon, Marloes P.; Ramirez-Villegas, Julian; Berghuijs, Herman N.C.; +1 AuthorsAlimagham, Seyyedmajid; van Loon, Marloes P.; Ramirez-Villegas, Julian; Berghuijs, Herman N.C.; van Ittersum, Martin K.;Crop models are the primary means by which agricultural scientists assess climate change impacts on crop production. Site-based and high-quality weather and climate data is essential for agronomically and physiologically sound crop simulations under historical and future climate scenarios. Here, we describe a bias-corrected dataset of daily agro-meteorological data for 109 reference weather stations distributed across key production areas of maize, millet, sorghum, and wheat in ten sub-Saharan African countries. The dataset leverages extensive ground observations from the Global Yield Gap Atlas (GYGA), an existing climate change projections dataset from the Inter-Sectoral Model Intercomparison Project (ISIMIP), and a calibrated crop simulation model (the WOrld FOod Studies -WOFOST). The weather data were bias-corrected using the delta method, which is widely used in climate change impact studies. The bias-corrected dataset encompasses daily values of maximum and minimum temperature, precipitation rate, and global radiation obtained from five models participating in the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), as well as simulated daily growth variables for the four crops. The data covers three periods: historical (1995-2014), 2030 (2020-2039), and 2050 (2040-2059). The simulation of daily growth dynamics for maize, millet, sorghum, and wheat growth was performed using the daily weather data and the WOFOST crop model, under potential and water-limited potential conditions. The crop simulation outputs were evaluated using national agronomic expertise. The presented datasets, including the weather dataset and daily simulated crop growth outputs, hold substantial potential for further use in the investigation of future climate change impacts in sub-Saharan Africa. The daily weather data can be used as an input into other modelling frameworks for crops or other sectors (e.g., hydrology). The weather and crop growth data can provide key insights about agro-meteorological conditions and water-limited crop output to inform adaptation priorities and benchmark (gridded) crop simulations. Finally, the weather and simulated growth data can also be used for training machine learning techniques for extrapolation purposes.
Data in Brief arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Data in Brief arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2021Embargo end date: 22 Mar 2021 FrancePublisher:Harvard Dataverse Authors: Born, Lorna; Prager, Steve; Ramirez, Julian; Imbach, Pablo;doi: 10.7910/dvn/uddtxe
handle: 10568/116612
The decision matrix is a meta-analysis of climate services literature in the form of an Excel spreadsheet.
Harvard Dataverse arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Dataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Harvard Dataverse arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Dataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2019Embargo end date: 14 Jan 2019 FrancePublisher:Harvard Dataverse Authors: Läderach, Peter; Ramirez Villegas, Julian; Navarro Racines, Carlos E.; Zelaya Martinez, Carlos; +2 AuthorsLäderach, Peter; Ramirez Villegas, Julian; Navarro Racines, Carlos E.; Zelaya Martinez, Carlos; Martinez Valle, Armando; Jarvis, Andy;doi: 10.7910/dvn/tsupe1
handle: 10568/99234
Coffee is grown in more than 60 tropical countries on over 11 million ha by an estimated 25 million farmers, most of whom are smallholders. Several regional studies demonstrate the climate sensitivity of coffee (Coffea arabica) and the likely impact of climate change on coffee suitability, yield, increased pest and disease pressure and farmers’ livelihoods. The objectives of this paper are (i) to quantify the impact of progressive climate change to grow coffee and to produce high quality coffee in Nicaragua and (ii) to develop an adaptation framework across time and space to guide adaptation planning. We used coffee location and cup quality data from Nicaragua in combination with the Maxent and CaNaSTA crop suitability models, the WorldClim historical data and the CMIP3 global circulation models to predict the likely impact of climate change on coffee suitability and quality. We distinguished four different impact scenarios: Very high (coffee disappears), high (large negative changes), medium (little negative changes) and increase (positive changes) in climate suitability. During the Nicaraguan coffee roundtable, most promising adaptation strategies were identified, which we then used to develop a two-dimensional adaptation framework for coffee in time and space. Our analysis indicates that incremental adaptation may occur over short-term horizons at lower altitudes, whereas the same areas may undergo transformative adaptation in the longer term. At higher elevations incremental adaptation may be needed in the long term. The same principle and framework is applicable across coffee growing regions around the world.
Harvard Dataverse arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Dataset . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Harvard Dataverse arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Dataset . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 France, Netherlands, FrancePublisher:Springer Science and Business Media LLC Authors: Colin K. Khoury; Colin K. Khoury; Julian Ramirez-Villegas; Julian Ramirez-Villegas; +1 AuthorsColin K. Khoury; Colin K. Khoury; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas;handle: 10568/51506
The projected impact of climate change on agro-ecological systems is considered widespread and significant, particularly across the global tropics. As in many other countries, adaptation to climate change is likely to be an important challenge for Colombian agricultural systems. In a recent study, a national-level assessment of the likely future impacts of climate change on agriculture was performed (Ramirez-Villegas et al. Clim Chang 115:611–628, 2012, RV2012). The study diagnosed key challenges directly affecting major crops and regions within the Colombian agricultural system and suggested a number of actions thought to facilitate adaptation, while refraining from proposing specific strategies at local scales. Further insights on the study were published by Feola (2013) (F2013), who stressed the need for transformative adaptation processes to reduce vulnerability particularly of resource-limited farmers, and the benefits of a predominantly stakeholder-led approach to adaptation. We clarify that the recommendations outlined in RV2012 were not intended as a recipe for multi-scale adaptation, but rather a set of actions that are required to diagnose and develop adaptation actions particularly at governmental levels in coordination with national and international adaptation initiatives. Such adaptation actions ought to be, ideally, a product of inclusive sub-sectorial assessments, which can take different forms. We argue that Colombian agriculture as a whole would benefit from a better outlining of adaptation needs across temporal scales in sub-sectorial assessments that take into account both RV2012 and F2013 orientations to adaptation. We conclude with two case studies of research on climate change impacts and adaptation developed in Colombia that serve as examples of realistic, productive sectorial and sub-national assessments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:California Digital Library (CDL) Grazia Pacillo; Theresa Liebig; Bia Carneiro; Lorena Medina; Frans Schapendonk; Benson Kipkemboi Kenduiywo; Alessandro Craparo; Ashleigh Basel; Henintsoa Onivola Minoarivelo; Víctor Manuel Zamora Villa; Anna Maria Belli; Giulia Caroli; Ignacio Madurga-Lopez; Cesare M. Scartozzi; Tanaya DuttaGupta; Julián Ramírez-Villegas; Harold Achicanoy; Andres Camilo Mendez; Giuliano Resce; Giosuè Ruscica; Niklas Sax; Marina Mastrorillo; Peter Läderach;International, regional, and national organizations and policymakers are increasingly acknowledging the implications of climate on peace and security, but robust research approaches that embrace the complexity of this nexus are lacking. In this paper, we present the Integrated Climate Security Framework (ICSF), a mixed-methods framework to understand the mechanisms of climate–conflict linkages at different scales. The framework uses conventional and non-conventional methods and data to provide state-of-the-art policy-relevant evidence that addresses four main questions: how, where and for whom climate and conflict risks occur, and what can be done to mitigate this vicious circle. The framework provides a comprehensive assessment of the complex social-ecological dynamics, adopting systems approaches that rely on a combination of epistemological stances, thereby leveraging diverse qualitative, quantitative, locally relevant, and multifaceted data sources; and on a diversity of actors involved in the co-production of knowledge. Using a case study from Kenya, we show that the climate security nexus is highly complex and that there exists strong, theoretical, and statistical evidence that access to natural resources, livelihoods and food security are important pathways whereby climate can increase the risk of conflict, and that conflict undermines resilience objectives. We also find that communities in climate security hotspots are aware and highly knowledgeable about the risk that the climate crisis poses on existing drivers of conflict and yet, online issue mapping and policy coherence analysis indicate that policymakers have not been acknowledging the nexus appropriately. The policy-relevant evidence that is collected through the ICSF and collated in the CGIAR Climate Security Observatory aims to fill this gap and to help transform climate adaptation into an “instrument for peace”.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Australia, United Kingdom, United Kingdom, Austria, France, United Kingdom, FrancePublisher:American Geophysical Union (AGU) Funded by:UKRI | FACCE MACSUR Knowledge Hu...UKRI| FACCE MACSUR Knowledge Hub Crop modellingLaixiang Sun; Laixiang Sun; Laixiang Sun; Bing Chen; Tingting Fan; Lindsay Lee; Sat Ghosh; Kuishuang Feng; Ann-Kristin Koehler; Yao Gao; Andrew J. Challinor; Andrew J. Challinor; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; James E. M. Watson; Yan Yin; Huiyi Yang; Huiyi Yang; S. Dobbie;AbstractGeoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop‐climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77800Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77800Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, United Kingdom, FrancePublisher:Wiley Authors: Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Carlos E. Navarro-Racines; +8 AuthorsJulian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Carlos E. Navarro-Racines; Flavio Breseghello; Tao Li; Adriano Pereira de Castro; Alexandre Bryan Heinemann; Maria Camila Rebolledo; Maria Camila Rebolledo; Andrew J. Challinor; Andrew J. Challinor;AbstractRice is the most important food crop in the developing world. For rice production systems to address the challenges of increasing demand and climate change, potential and on‐farm yield increases must be increased. Breeding is one of the main strategies toward such aim. Here, we hypothesize that climatic and atmospheric changes for the upland rice growing period in central Brazil are likely to alter environment groupings and drought stress patterns by 2050, leading to changing breeding targets during the 21st century. As a result of changes in drought stress frequency and intensity, we found reductions in productivity in the range of 200–600 kg/ha (up to 20%) and reductions in yield stability throughout virtually the entire upland rice growing area (except for the southeast). In the face of these changes, our crop simulation analysis suggests that the current strategy of the breeding program, which aims at achieving wide adaptation, should be adjusted. Based on the results for current and future climates, a weighted selection strategy for the three environmental groups that characterize the region is suggested. For the highly favorable environment (HFE, 36%–41% growing area, depending on RCP), selection should be done under both stress‐free and terminal stress conditions; for the favorable environment (FE, 27%–40%), selection should aim at testing under reproductive and terminal stress, and for the least favorable environment (LFE, 23%–27%), selection should be conducted for response to reproductive stress only and for the joint occurrence of reproductive and terminal stress. Even though there are differences in timing, it is noteworthy that stress levels are similar across environments, with 40%–60% of crop water demand unsatisfied. Efficient crop improvement targeted toward adaptive traits for drought tolerance will enhance upland rice crop system resilience under climate change.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/90997Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/90997Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 FrancePublisher:IOP Publishing Authors: Andrew J. Challinor; Andrew J. Challinor; Philip K. Thornton; Philip K. Thornton; +5 AuthorsAndrew J. Challinor; Andrew J. Challinor; Philip K. Thornton; Philip K. Thornton; Andy Jarvis; Andy Jarvis; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas;handle: 10568/28987
Les modèles climatiques mondiaux (MCG) sont devenus de plus en plus importants pour la science du changement climatique et constituent la base de la plupart des études d'impact. Étant donné que les modèles d'impact sont très sensibles aux données climatiques d'entrée, les compétences en GCM sont cruciales pour obtenir de meilleures perspectives à court, moyen et long terme pour la production agricole et la sécurité alimentaire. L'ensemble de la phase 5 du projet d'intercomparaison de modèles couplés (CMIP) est susceptible de sous-tendre la majorité des évaluations d'impact climatique au cours des prochaines années. Nous évaluons 24 simulations CMIP3 et 26 CMIP5 du climat actuel par rapport aux observations climatiques pour cinq régions tropicales, ainsi que les améliorations régionales des compétences des modèles et, par le biais d'une revue de la littérature, les sensibilités des estimations d'impact aux erreurs des modèles. Les moyennes climatologiques des températures moyennes saisonnières représentent des erreurs moyennes entre 1 et 18 ° C (2-130% par rapport à la moyenne), tandis que les précipitations saisonnières et la fréquence des jours humides représentent des erreurs plus importantes, compensant souvent les moyennes observées et la variabilité au-delà de 100%. La variabilité climatique interannuelle simulée dans les MCG mérite une attention particulière, étant donné qu'aucun MCG ne correspond aux observations dans plus de 30 % des zones pour les précipitations mensuelles et la fréquence des jours humides, 50 % pour la plage diurne et 70 % pour les températures moyennes. Nous rapportons des améliorations des compétences climatiques moyennes de 5 à 15 % pour les températures moyennes climatologiques, de 3 à 5 % pour la plage diurne et de 1 à 2 % pour les précipitations. À ces taux d'amélioration, nous estimons qu'au moins 5 à 30 ans de travail du CMIP sont nécessaires pour améliorer les simulations régionales de température et au moins 30 à 50 ans pour les simulations de précipitations, pour que celles-ci soient directement entrées dans les modèles d'impact. Nous concluons avec quelques recommandations pour l'utilisation de CMIP5 dans les études d'impact agricole. Los modelos climáticos globales (GCM) se han vuelto cada vez más importantes para la ciencia del cambio climático y proporcionan la base para la mayoría de los estudios de impacto. Dado que los modelos de impacto son muy sensibles a los datos climáticos de entrada, la habilidad del GCM es crucial para obtener mejores perspectivas a corto, mediano y largo plazo para la producción agrícola y la seguridad alimentaria. Es probable que el conjunto de fase 5 del Proyecto de Intercomparación de Modelos Acoplados (CMIP) sustente la mayoría de las evaluaciones de impacto climático en los próximos años. Evaluamos 24 simulaciones CMIP3 y 26 CMIP5 del clima actual contra las observaciones climáticas para cinco regiones tropicales, así como las mejoras regionales en la habilidad del modelo y, a través de la revisión de la literatura, las sensibilidades de las estimaciones de impacto al error del modelo. Las medias climatológicas de las temperaturas medias estacionales muestran errores medios entre 1 y 18 °C (2-130% con respecto a la media), mientras que las precipitaciones estacionales y la frecuencia de los días húmedos muestran errores mayores, que a menudo compensan las medias observadas y la variabilidad más allá del 100%. La variabilidad climática interanual simulada en los mcg merece especial atención, dado que ningún mcg coincide con lo observado en más del 30% de las áreas para la precipitación mensual y la frecuencia de los días húmedos, el 50% para el rango diurno y el 70% para las temperaturas medias. Reportamos mejoras en la habilidad climática media de 5–15% para las temperaturas medias climatológicas, 3–5% para el rango diurno y 1–2% en la precipitación. A estas tasas de mejora, estimamos que se requieren al menos 5–30 años de trabajo de CMIP para mejorar las simulaciones de temperatura regionales y al menos 30–50 años para las simulaciones de precipitación, para que estas se ingresen directamente en los modelos de impacto. Concluimos con algunas recomendaciones para el uso de CMIP5 en estudios de impacto agrícola. Global climate models (GCMs) have become increasingly important for climate change science and provide the basis for most impact studies. Since impact models are highly sensitive to input climate data, GCM skill is crucial for getting better short-, medium- and long-term outlooks for agricultural production and food security. The Coupled Model Intercomparison Project (CMIP) phase 5 ensemble is likely to underpin the majority of climate impact assessments over the next few years. We assess 24 CMIP3 and 26 CMIP5 simulations of present climate against climate observations for five tropical regions, as well as regional improvements in model skill and, through literature review, the sensitivities of impact estimates to model error. Climatological means of seasonal mean temperatures depict mean errors between 1 and 18 ° C (2–130% with respect to mean), whereas seasonal precipitation and wet-day frequency depict larger errors, often offsetting observed means and variability beyond 100%. Simulated interannual climate variability in GCMs warrants particular attention, given that no single GCM matches observations in more than 30% of the areas for monthly precipitation and wet-day frequency, 50% for diurnal range and 70% for mean temperatures. We report improvements in mean climate skill of 5–15% for climatological mean temperatures, 3–5% for diurnal range and 1–2% in precipitation. At these improvement rates, we estimate that at least 5–30 years of CMIP work is required to improve regional temperature simulations and at least 30–50 years for precipitation simulations, for these to be directly input into impact models. We conclude with some recommendations for the use of CMIP5 in agricultural impact studies. أصبحت نماذج المناخ العالمي (GCMs) ذات أهمية متزايدة لعلوم تغير المناخ وتوفر الأساس لمعظم دراسات التأثير. نظرًا لأن نماذج التأثير حساسة للغاية لإدخال البيانات المناخية، فإن مهارة GCM ضرورية للحصول على توقعات أفضل على المدى القصير والمتوسط والطويل للإنتاج الزراعي والأمن الغذائي. من المرجح أن تدعم مجموعة المرحلة الخامسة من مشروع المقارنة بين النماذج المقترنة (CMIP) غالبية تقييمات التأثير المناخي على مدى السنوات القليلة المقبلة. نقوم بتقييم 24 محاكاة CMIP3 و 26 CMIP5 للمناخ الحالي مقابل ملاحظات المناخ لخمس مناطق استوائية، بالإضافة إلى التحسينات الإقليمية في مهارة النموذج، ومن خلال مراجعة الأدبيات، وحساسيات تقديرات التأثير لنمذجة الخطأ. تصور المتوسطات المناخية لمتوسط درجات الحرارة الموسمية أخطاء متوسطة تتراوح بين 1 و 18 درجة مئوية (2-130 ٪ فيما يتعلق بالمتوسط)، في حين أن هطول الأمطار الموسمي وتردد اليوم الرطب يصور أخطاء أكبر، وغالبًا ما تعوض الوسائل المرصودة والتباين الذي يتجاوز 100 ٪. تستدعي محاكاة تقلبات المناخ بين السنوات في GCMs اهتمامًا خاصًا، نظرًا لأنه لا يوجد GCM واحد يطابق الملاحظات في أكثر من 30 ٪ من المناطق لهطول الأمطار الشهرية وتردد اليوم الرطب، و 50 ٪ للنطاق النهاري و 70 ٪ لدرجات الحرارة المتوسطة. نبلغ عن تحسينات في متوسط المهارة المناخية بنسبة 5-15 ٪ لدرجات الحرارة المتوسطة المناخية، و 3-5 ٪ للنطاق النهاري و 1-2 ٪ في هطول الأمطار. بمعدلات التحسن هذه، نقدر أن هناك حاجة إلى ما لا يقل عن 5–30 عامًا من العمل في CMIP لتحسين محاكاة درجة الحرارة الإقليمية وما لا يقل عن 30–50 عامًا لمحاكاة هطول الأمطار، حتى يتم إدخالها مباشرة في نماذج التأثير. نختتم ببعض التوصيات لاستخدام CMIP5 في دراسات الأثر الزراعي.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2013License: CC BYFull-Text: https://hdl.handle.net/10568/28987Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2013License: CC BYFull-Text: https://hdl.handle.net/10568/28987Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, France, FrancePublisher:Elsevier BV Leonardo Ordoñez; Eliana Vallejo; Daniel Amariles; Jeison Mesa; Alejandra Esquivel; Lizeth Llanos-Herrera; Steven D. Prager; Cristian Camilo Segura; Jhon Jairo Valencia; Carmen Julio Duarte; Diana Carolina Rojas; Diego Obando; Julián Ramírez-Villegas;handle: 10568/127886
La variabilité climatique affecte la production végétale de manière multiple et souvent complexe. Le développement et l'utilisation de cultures hybrides avec une plus grande productivité et une plus grande tolérance aux chocs climatiques est l'une des approches de l'adaptation au climat et de l'intensification agricole. Étant donné que les cultures hybrides sont plus chères pour le producteur, la gestion des risques est d'une importance primordiale. Ici, nous posons qu'il existe un fort potentiel pour le secteur colombien du maïs d'utiliser les services climatiques spécifiques aux cultures pour la réduction des risques. Nous avons utilisé le modèle de culture CERES-Maize connecté aux prévisions climatiques saisonnières développées via l'analyse de corrélation canonique (ACC) dans les principales zones de culture du maïs en Colombie pour évaluer la performance d'une prévision agroclimatique spécifique au maïs afin d'éclairer deux décisions clés, à savoir le choix des dates de semis et des génotypes. Nous constatons que les modèles agroclimatiques fonctionnent bien dans les catégories de rendement discriminantes (supérieures, inférieures et normales) avec une capacité de discrimination allant jusqu'à 70–80 % pour les catégories « inférieures à la normale » et « supérieures + inférieures à la normale ». Conformément à cela, les prévisions agroclimatiques prédisent généralement la date de plantation optimale avec une erreur de 3 pentades ou moins. Ils prédisent également le choix optimal du génotype correctement environ 50 à 70 % du temps en fonction du site ou de la saison d'intérêt. Nous identifions notamment des cas spécifiques dans lesquels les prévisions agroclimatiques sont trompeuses, mais nous soutenons que la valeur globale des prévisions l'emporte sur ces cas. Les travaux futurs devraient se concentrer sur l'élargissement de la portée de la prévision agroclimatique pour inclure d'autres décisions agricoles pertinentes qui sont influencées par le climat, et sur l'amélioration des performances des prévisions climatiques. La variabilidad climática afecta a la producción de cultivos de múltiples y a menudo complejas maneras. El desarrollo y uso de cultivos híbridos con mayor productividad y tolerancia a los choques climáticos es uno de los enfoques para la adaptación climática y la intensificación agrícola. Dado que los cultivos híbridos son más caros para el productor, la gestión de riesgos es de suma importancia. Aquí, planteamos que existe un alto potencial para que el sector colombiano del maíz utilice servicios climáticos específicos de cultivos para la reducción de riesgos. Utilizamos el modelo de cultivo CERES-Maize conectado a los pronósticos climáticos estacionales desarrollados a través del Análisis de Correlación Canónica (CCA) en áreas clave de cultivo de maíz en Colombia para evaluar el desempeño de un pronóstico agroclimático específico del maíz para informar dos decisiones clave, a saber, la elección de las fechas de siembra y los genotipos. Encontramos que los modelos agroclimáticos se desempeñan bien en la discriminación de categorías de rendimiento (por encima, por debajo y normal) con una capacidad de discriminación de hasta el 70–80 % para las categorías "por debajo de lo normal" y "por encima + por debajo de lo normal". De acuerdo con esto, los pronósticos agroclimáticos generalmente predicen la fecha óptima de siembra con un error de 3 pentadas o menos. También predicen la elección óptima del genotipo correctamente alrededor del 50-70% del tiempo dependiendo del sitio o la temporada de interés. En particular, identificamos casos específicos en los que el pronóstico agroclimático es engañoso, pero argumentamos que el valor general de los pronósticos supera estos casos. El trabajo futuro debe centrarse en ampliar el alcance de la predicción agroclimática para incluir otras decisiones agrícolas relevantes que están influenciadas por el clima, y en la mejora del desempeño del pronóstico climático. Climate variability affects crop production in multiple and often complex ways. The development and use hybrid crops with greater productivity and tolerance to climate shocks is one of the approaches to climate adaptation and agricultural intensification. Since hybrid crops are more expensive for the producer, risk management is of paramount importance. Here, we pose that there is high potential for the Colombian maize sector to use crop-specific climate services for risk reduction. We used the CERES-Maize crop model connected to seasonal climate forecasts developed via Canonical Correlation Analysis (CCA) across key maize growing areas in Colombia to assess the performance of a maize-specific agroclimatic forecast to inform two key decisions, namely, the choice of sowing dates and genotypes. We find that the agroclimatic models perform well at discriminating yield categories (above, below, and normal) with discrimination capacity of up to 70–80 % for the 'below normal' and 'above + below normal' categories. Consistent with this, agroclimatic forecasts typically predict the optimal planting date with an error of 3 pentads or less. They also predict the optimal choice of genotype correctly around 50–70 % of the time depending on the site or season of interest. Notably, we identify specific cases in which the agroclimatic forecast is misleading but argue that the overall value of the forecasts outweighs these cases. Future work should focus on expanding the scope of the agroclimatic prediction to include other relevant farming decisions that are influenced by climate, and on the improvement of climate forecast performance. يؤثر تقلب المناخ على إنتاج المحاصيل بطرق متعددة ومعقدة في كثير من الأحيان. يعد تطوير واستخدام المحاصيل الهجينة ذات الإنتاجية الأكبر والتسامح مع الصدمات المناخية أحد مناهج التكيف مع المناخ والتكثيف الزراعي. نظرًا لأن المحاصيل الهجينة أكثر تكلفة للمنتج، فإن إدارة المخاطر ذات أهمية قصوى. هنا، نطرح أن هناك إمكانات عالية لقطاع الذرة الكولومبي لاستخدام الخدمات المناخية الخاصة بالمحاصيل للحد من المخاطر. استخدمنا نموذج المحاصيل CERES - Maize المرتبط بالتنبؤات المناخية الموسمية التي تم تطويرها عبر تحليل الارتباط الكنسي (CCA) عبر مناطق زراعة الذرة الرئيسية في كولومبيا لتقييم أداء التوقعات المناخية الزراعية الخاصة بالذرة لإبلاغ قرارين رئيسيين، وهما اختيار تواريخ البذر والأنماط الجينية. نجد أن النماذج المناخية الزراعية تؤدي أداءً جيدًا في فئات الغلة التمييزية (فوق، تحت، وطبيعية) مع قدرة تمييزية تصل إلى 70–80 ٪ للفئات "أقل من المعتاد" و "أعلى + أقل من المعتاد". وتماشياً مع ذلك، تتنبأ التنبؤات المناخية الزراعية عادةً بتاريخ الزراعة الأمثل مع وجود خطأ قدره 3 خماسيات أو أقل. كما يتنبأون بالاختيار الأمثل للنمط الجيني بشكل صحيح حوالي 50–70 ٪ من الوقت اعتمادًا على الموقع أو موسم الاهتمام. والجدير بالذكر أننا نحدد حالات محددة تكون فيها التوقعات المناخية الزراعية مضللة ولكننا نجادل بأن القيمة الإجمالية للتوقعات تفوق هذه الحالات. يجب أن يركز العمل المستقبلي على توسيع نطاق التنبؤ بالمناخ الزراعي ليشمل القرارات الزراعية الأخرى ذات الصلة التي تتأثر بالمناخ، وعلى تحسين أداء التنبؤ بالمناخ.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127886Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127886Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 India, France, Netherlands, France, France, France, India, FrancePublisher:Wiley Authors: Roberto Quiroz; Roberto Quiroz; Alexandre Bryan Heinemann; Maria Camila Rebolledo; +22 AuthorsRoberto Quiroz; Roberto Quiroz; Alexandre Bryan Heinemann; Maria Camila Rebolledo; Maria Camila Rebolledo; Andrew J. Challinor; Sivakumar Sukumaran; Nickolai Alexandrov; Michel Edmond Ghanem; Philomin Juliana; Vincent Vadez; Jiankang Wang; Anabel Molero Milan; Zakaria Kehel; José Crossa; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Fred A. van Eeuwijk; Jeffrey W. White; Diego N. L. Pequeno; Jawoo Koo; Jana Kholova; Cécile Grenier; Cécile Grenier; Senthold Asseng; Matthew P. Reynolds;doi: 10.1002/csc2.20048
handle: 10568/108316
AbstractCrop improvement efforts aiming at increasing crop production (quantity, quality) and adapting to climate change have been subject of active research over the past years. But, the question remains ‘to what extent can breeding gains be achieved under a changing climate, at a pace sufficient to usefully contribute to climate adaptation, mitigation and food security?’. Here, we address this question by critically reviewing how model‐based approaches can be used to assist breeding activities, with particular focus on all CGIAR (formerly the Consultative Group on International Agricultural Research but now known simply as CGIAR) breeding programs. Crop modeling can underpin breeding efforts in many different ways, including assessing genotypic adaptability and stability, characterizing and identifying target breeding environments, identifying tradeoffs among traits for such environments, and making predictions of the likely breeding value of the genotypes. Crop modeling science within the CGIAR has contributed to all of these. However, much progress remains to be done if modeling is to effectively contribute to more targeted and impactful breeding programs under changing climates. In a period in which CGIAR breeding programs are undergoing a major modernization process, crop modelers will need to be part of crop improvement teams, with a common understanding of breeding pipelines and model capabilities and limitations, and common data standards and protocols, to ensure they follow and deliver according to clearly defined breeding products. This will, in turn, enable more rapid and better‐targeted crop modeling activities, thus directly contributing to accelerated and more impactful breeding efforts.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/108316Data sources: Bielefeld Academic Search Engine (BASE)Crop ScienceArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/108316Data sources: Bielefeld Academic Search Engine (BASE)Crop ScienceArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 NetherlandsPublisher:Elsevier BV Authors: Alimagham, Seyyedmajid; van Loon, Marloes P.; Ramirez-Villegas, Julian; Berghuijs, Herman N.C.; +1 AuthorsAlimagham, Seyyedmajid; van Loon, Marloes P.; Ramirez-Villegas, Julian; Berghuijs, Herman N.C.; van Ittersum, Martin K.;Crop models are the primary means by which agricultural scientists assess climate change impacts on crop production. Site-based and high-quality weather and climate data is essential for agronomically and physiologically sound crop simulations under historical and future climate scenarios. Here, we describe a bias-corrected dataset of daily agro-meteorological data for 109 reference weather stations distributed across key production areas of maize, millet, sorghum, and wheat in ten sub-Saharan African countries. The dataset leverages extensive ground observations from the Global Yield Gap Atlas (GYGA), an existing climate change projections dataset from the Inter-Sectoral Model Intercomparison Project (ISIMIP), and a calibrated crop simulation model (the WOrld FOod Studies -WOFOST). The weather data were bias-corrected using the delta method, which is widely used in climate change impact studies. The bias-corrected dataset encompasses daily values of maximum and minimum temperature, precipitation rate, and global radiation obtained from five models participating in the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), as well as simulated daily growth variables for the four crops. The data covers three periods: historical (1995-2014), 2030 (2020-2039), and 2050 (2040-2059). The simulation of daily growth dynamics for maize, millet, sorghum, and wheat growth was performed using the daily weather data and the WOFOST crop model, under potential and water-limited potential conditions. The crop simulation outputs were evaluated using national agronomic expertise. The presented datasets, including the weather dataset and daily simulated crop growth outputs, hold substantial potential for further use in the investigation of future climate change impacts in sub-Saharan Africa. The daily weather data can be used as an input into other modelling frameworks for crops or other sectors (e.g., hydrology). The weather and crop growth data can provide key insights about agro-meteorological conditions and water-limited crop output to inform adaptation priorities and benchmark (gridded) crop simulations. Finally, the weather and simulated growth data can also be used for training machine learning techniques for extrapolation purposes.
Data in Brief arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Data in Brief arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2021Embargo end date: 22 Mar 2021 FrancePublisher:Harvard Dataverse Authors: Born, Lorna; Prager, Steve; Ramirez, Julian; Imbach, Pablo;doi: 10.7910/dvn/uddtxe
handle: 10568/116612
The decision matrix is a meta-analysis of climate services literature in the form of an Excel spreadsheet.
Harvard Dataverse arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Dataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Harvard Dataverse arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Dataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2019Embargo end date: 14 Jan 2019 FrancePublisher:Harvard Dataverse Authors: Läderach, Peter; Ramirez Villegas, Julian; Navarro Racines, Carlos E.; Zelaya Martinez, Carlos; +2 AuthorsLäderach, Peter; Ramirez Villegas, Julian; Navarro Racines, Carlos E.; Zelaya Martinez, Carlos; Martinez Valle, Armando; Jarvis, Andy;doi: 10.7910/dvn/tsupe1
handle: 10568/99234
Coffee is grown in more than 60 tropical countries on over 11 million ha by an estimated 25 million farmers, most of whom are smallholders. Several regional studies demonstrate the climate sensitivity of coffee (Coffea arabica) and the likely impact of climate change on coffee suitability, yield, increased pest and disease pressure and farmers’ livelihoods. The objectives of this paper are (i) to quantify the impact of progressive climate change to grow coffee and to produce high quality coffee in Nicaragua and (ii) to develop an adaptation framework across time and space to guide adaptation planning. We used coffee location and cup quality data from Nicaragua in combination with the Maxent and CaNaSTA crop suitability models, the WorldClim historical data and the CMIP3 global circulation models to predict the likely impact of climate change on coffee suitability and quality. We distinguished four different impact scenarios: Very high (coffee disappears), high (large negative changes), medium (little negative changes) and increase (positive changes) in climate suitability. During the Nicaraguan coffee roundtable, most promising adaptation strategies were identified, which we then used to develop a two-dimensional adaptation framework for coffee in time and space. Our analysis indicates that incremental adaptation may occur over short-term horizons at lower altitudes, whereas the same areas may undergo transformative adaptation in the longer term. At higher elevations incremental adaptation may be needed in the long term. The same principle and framework is applicable across coffee growing regions around the world.
Harvard Dataverse arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Dataset . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Harvard Dataverse arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Dataset . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 France, Netherlands, FrancePublisher:Springer Science and Business Media LLC Authors: Colin K. Khoury; Colin K. Khoury; Julian Ramirez-Villegas; Julian Ramirez-Villegas; +1 AuthorsColin K. Khoury; Colin K. Khoury; Julian Ramirez-Villegas; Julian Ramirez-Villegas; Julian Ramirez-Villegas;handle: 10568/51506
The projected impact of climate change on agro-ecological systems is considered widespread and significant, particularly across the global tropics. As in many other countries, adaptation to climate change is likely to be an important challenge for Colombian agricultural systems. In a recent study, a national-level assessment of the likely future impacts of climate change on agriculture was performed (Ramirez-Villegas et al. Clim Chang 115:611–628, 2012, RV2012). The study diagnosed key challenges directly affecting major crops and regions within the Colombian agricultural system and suggested a number of actions thought to facilitate adaptation, while refraining from proposing specific strategies at local scales. Further insights on the study were published by Feola (2013) (F2013), who stressed the need for transformative adaptation processes to reduce vulnerability particularly of resource-limited farmers, and the benefits of a predominantly stakeholder-led approach to adaptation. We clarify that the recommendations outlined in RV2012 were not intended as a recipe for multi-scale adaptation, but rather a set of actions that are required to diagnose and develop adaptation actions particularly at governmental levels in coordination with national and international adaptation initiatives. Such adaptation actions ought to be, ideally, a product of inclusive sub-sectorial assessments, which can take different forms. We argue that Colombian agriculture as a whole would benefit from a better outlining of adaptation needs across temporal scales in sub-sectorial assessments that take into account both RV2012 and F2013 orientations to adaptation. We conclude with two case studies of research on climate change impacts and adaptation developed in Colombia that serve as examples of realistic, productive sectorial and sub-national assessments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:California Digital Library (CDL) Grazia Pacillo; Theresa Liebig; Bia Carneiro; Lorena Medina; Frans Schapendonk; Benson Kipkemboi Kenduiywo; Alessandro Craparo; Ashleigh Basel; Henintsoa Onivola Minoarivelo; Víctor Manuel Zamora Villa; Anna Maria Belli; Giulia Caroli; Ignacio Madurga-Lopez; Cesare M. Scartozzi; Tanaya DuttaGupta; Julián Ramírez-Villegas; Harold Achicanoy; Andres Camilo Mendez; Giuliano Resce; Giosuè Ruscica; Niklas Sax; Marina Mastrorillo; Peter Läderach;International, regional, and national organizations and policymakers are increasingly acknowledging the implications of climate on peace and security, but robust research approaches that embrace the complexity of this nexus are lacking. In this paper, we present the Integrated Climate Security Framework (ICSF), a mixed-methods framework to understand the mechanisms of climate–conflict linkages at different scales. The framework uses conventional and non-conventional methods and data to provide state-of-the-art policy-relevant evidence that addresses four main questions: how, where and for whom climate and conflict risks occur, and what can be done to mitigate this vicious circle. The framework provides a comprehensive assessment of the complex social-ecological dynamics, adopting systems approaches that rely on a combination of epistemological stances, thereby leveraging diverse qualitative, quantitative, locally relevant, and multifaceted data sources; and on a diversity of actors involved in the co-production of knowledge. Using a case study from Kenya, we show that the climate security nexus is highly complex and that there exists strong, theoretical, and statistical evidence that access to natural resources, livelihoods and food security are important pathways whereby climate can increase the risk of conflict, and that conflict undermines resilience objectives. We also find that communities in climate security hotspots are aware and highly knowledgeable about the risk that the climate crisis poses on existing drivers of conflict and yet, online issue mapping and policy coherence analysis indicate that policymakers have not been acknowledging the nexus appropriately. The policy-relevant evidence that is collected through the ICSF and collated in the CGIAR Climate Security Observatory aims to fill this gap and to help transform climate adaptation into an “instrument for peace”.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
