- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Dilys S. MacCarthy; Myriam Adam; Bright S. Freduah; Benedicta Yayra Fosu-Mensah; +4 AuthorsDilys S. MacCarthy; Myriam Adam; Bright S. Freduah; Benedicta Yayra Fosu-Mensah; Peter A. Y. Ampim; Mouhamed Ly; Pierre S. Traore; Samuel G. K. Adiku;doi: 10.3390/su13095191
handle: 10625/63326
Agriculture in West Africa is constrained by several yield-limiting factors, such as poor soil fertility, erratic rainfall distributions and low input systems. Projected changes in climate, thus, pose a threat since crop production is mainly rain-fed. The impact of climate change and its variation on the productivity of cereals in smallholder settings under future production systems in Navrongo, Ghana and Nioro du Rip, Senegal was assessed in this study. Data on management practices obtained from household surveys and projected agricultural development pathways (through stakeholder engagements), soil data, weather data (historical: 1980–2009 and five General Circulation Models; mid-century time slice 2040–2069 for two Representative Concentration Pathways; 4.5 and 8.5) were used for the impact assessment, employing a crop simulation model. Ensemble maize yield changes under the sustainable agricultural development pathway (SDP) were −13 and −16%, while under the unsustainable development pathway (USDP), yield changes were −19 and −20% in Navrongo and Nioro du Rip, respectively. The impact on sorghum and millet were lower than that on maize. Variations in climate change impact among smallholders were high with relative standard deviations (RSD) of between 14% and 60% across the cereals with variability being higher under the USDP, except for millet. Agricultural production systems with higher intensification but with less emphasis on soil conservation (USDP) will be more negatively impacted by climate change compared to relatively sustainable ones (SDP).
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Bright Freduah; Dilys MacCarthy; Myriam Adam; Mouhamed Ly; Alex Ruane; Eric Timpong-Jones; Pierre Traore; Kenneth Boote; Cheryl Porter; Samuel Adiku;handle: 10568/107772
Climate change is estimated to exacerbate existing challenges faced by smallholder farmers in Sub-Sahara Africa. However, limited studies quantify the extent of variation in climate change impact under these systems at the local scale. The Decision Support System for Agro-technological Transfer (DSSAT) was used to quantify variation in climate change impacts on maize yield under current agricultural practices in semi-arid regions of Senegal (Nioro du Rip) and Ghana (Navrongo and Tamale). Multi-benchmark climate models (Mid-Century, 2040–2069 for two Representative Concentration Pathways, RCP4.5 and RCP8.5), and multiple soil and management information from agronomic surveys were used as input for DSSAT. The average impact of climate scenarios on grain yield among farms ranged between −9% and −39% across sites. Substantial variation in climate response exists across farms in the same farming zone with relative standard deviations from 8% to 117% at Nioro du Rip, 13% to 64% in Navrongo and 9% to 37% in Tamale across climate models. Variations in fertilizer application, planting dates and soil types explained the variation in the impact among farms. This study provides insight into the complexities of the impact of climate scenarios on maize yield and the need for better representation of heterogeneous farming systems for optimized outcomes in adaptation and resilience planning in smallholder systems.
Agronomy arrow_drop_down AgronomyOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4395/9/10/639/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/107772Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4395/9/10/639/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/107772Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Labake Ogunkanmi; Dilys S. MacCarthy; Samuel G. K. Adiku;Climate change is a major environmental stressor that would adversely affect tropical agriculture, which is largely rain-fed. Associated with climate change is an increasing trend in temperature and decline in rainfall, leading to prolonged and repeated droughts. The purpose of this study was to determine the effect of climate variables such as temperature, relative humidity, vapor pressure deficit (VPD), and soil water on the phenology, biomass, and grain yield of soybean crops. A greenhouse experiment was set in a split plot design with three average environmental conditions as the main plots: E1 (36 °C, RH = 55%), E2 (34 °C, RH = 57%) and E3 (33 °C, RH = 44%). Additionally, there were three water treatments: W1 (near saturation), W2 (Field capacity), and W3 (soil water deficit) and two soybean varieties (Afayak and Jenguma). These treatments were replicated nine times. The results showed that high temperatures (E1) accelerated the crop development, particularly at flowering. Additionally, increased atmospheric demand for water under a high temperature environment resulted in high evapotranspiration, leading to high transpiration which probably reduced photosynthetic activity of the plants and thereby contributing to biomass and grain yield loss. Biomass and yield were drastically reduced for the combined effect of high temperature (E1) and drought (W3) as compared to combined effect of ambient temperature (E3) and well-watered condition (W1). Increasing temperatures and erratic rainfall distributions associated with climate change poses a potential threat to the soybean production in Ghana.
Agriculture arrow_drop_down AgricultureOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-0472/12/1/43/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agriculture arrow_drop_down AgricultureOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-0472/12/1/43/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Authors: Dilys S. MacCarthy; Robert B. Zougmoré; P. B. Irénikatché Akponikpè; Eric Koomson; +2 AuthorsDilys S. MacCarthy; Robert B. Zougmoré; P. B. Irénikatché Akponikpè; Eric Koomson; Patrice Savadogo; S.G.K. Adiku;handle: 10568/92032
The emission of greenhouse gases (GHGs) results in global warming and climate change. The extent to which developing countries contribute to GHG emissions is not well known. This study reports findings on the effects of different land-use systems on GHG emissions (CO2 in this case) from two locations in the southern zone of Ghana, West Africa. Site one (located at Kpong) contained a heavy clay soil while site two (located at Legon) contained a light-textured sandy soil. Land-use systems include cattle kraals, natural forests, cultivated maize fields, and rice paddy fields at site one, and natural forest, woodlots, and cultivated soya bean fields at site two. CO2 emissions were measured using the gas entrapment method (PVC chambers). Trapping solutions were changed every 12–48 h and measurement lasted 9 to 15 days depending on the site. We found that, for the same land-use, CO2 emissions were higher on the clay soil (Kpong) than the sandy soil (Legon). In the clay soil environment, the highest average CO2 emission was observed from the cattle kraal (256.7 mg·m−2·h−1), followed by the forest (146.0 mg·m−2·h−1) and rice paddy (140.6 mg·m−2·h−1) field. The lowest average emission was observed for maize cropped land (112.0 mg·m−2·h−1). In the sandy soil environment, the highest average CO2 emission was observed from soya cropped land (52.5 mg·m−2·h−1), followed by the forest (47.4 mg·m−2·h−1) and woodlot (33.7 mg·m−2·h−1). Several factors influenced CO2 emissions from the different land-use systems. These include the inherent properties of the soils such as texture, temperature, and moisture content, which influenced CO2 production through their effect on soil microbial activity and root respiration. Practices that reduce CO2 emissions are likely to promote carbon sequestration, which will consequently maintain or increase crop productivity and thereby improve global or regional food security.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92032Data sources: Bielefeld Academic Search Engine (BASE)Applied and Environmental Soil ScienceArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92032Data sources: Bielefeld Academic Search Engine (BASE)Applied and Environmental Soil ScienceArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2023Publisher:Burleigh Dodds Science Publishing MacCarthy, D S; Akponikpe, P B I; Akinseye, F M; Ly, M; Timpong-Jones, E C; Hathie, I; Adiku, S G K;Agriculture involves approximately 60% of the population and contributes significantly to the Gross Domestic Product (GDP) of the majority of West African countries. Agricultural productivity in the sub-region is projected to be adversely impacted by climate change. The sustainability of West African agriculture in the face of climate change depends on a thorough appreciation of its impact and the adaptation options available. This chapter begins with an overview of West Africa as a region, followed by an overview of West African climatic conditions. The chapter then provides a meta-analysis of studies investigating the effects of climate change on West Africa. It also highlights challenges in modeling the varied and distinctive characteristics of West African farming systems as well as potential adaptation options. The next section reviews the impact of climate change on livestock production followed by a brief section on integrated climate change impact assessment. The chapter ends with future developments and links to further reading.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.19103/as.20...Part of book or chapter of book . 2023 . Peer-reviewedData sources: CrossrefICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.19103/as.20...Part of book or chapter of book . 2023 . Peer-reviewedData sources: CrossrefICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:IOP Publishing Babacar Faye; Heidi Webber; Jesse B. Naab; Dilys S. MacCarthy; Myriam Adam; Frank Ewert; John P. A. Lamers; Carl‐Friedrich Schleussner; Alex C. Ruane; Ursula Geßner; Gerrit Hoogenboom; Kenneth J. Boote; Vakhtang Shelia; Fahad Saeed; Dominik Wisser; Sofia Hadir; Patrick Laux; Thomas Gaiser;Pour réduire les risques du changement climatique, les gouvernements ont convenu dans l'Accord de Paris de limiter l'augmentation de la température mondiale à moins de 2,0 °C par rapport aux niveaux préindustriels, avec l'ambition de maintenir le réchauffement à 1,5 °C. La cartographie des réponses d'atténuation appropriées nécessite des informations sur les coûts d'atténuation par rapport aux dommages associés pour les deux niveaux de réchauffement. Dans cette évaluation, une considération critique est l'impact sur les rendements des cultures et la variabilité des rendements dans les régions actuellement confrontées à l'insécurité alimentaire. La présente étude a évalué les impacts de 1,5 °C par rapport à 2,0 °C sur les rendements du maïs, du millet perlé et du sorgho dans la savane soudanaise d'Afrique de l'Ouest en utilisant deux modèles de culture qui ont été calibrés avec des variétés communes issues d'expériences dans la région, la gestion reflétant une gamme de fenêtres de semis typiques. Comme l'intensification durable est encouragée dans la région pour améliorer la sécurité alimentaire, des simulations ont été menées à la fois pour l'utilisation actuelle d'engrais et pour un cas d'intensification (fertilité non limitative). Avec l'utilisation actuelle d'engrais, les résultats ont indiqué des pertes plus élevées de 2 % pour le maïs et le sorgho avec 2,0 °C par rapport au réchauffement de 1,5 °C, sans changement dans les rendements en mil pour aucun des scénarios. Dans le cas de l'intensification, les pertes de rendement dues au changement climatique étaient plus importantes qu'avec les niveaux actuels d'engrais. Cependant, malgré les pertes plus importantes, les rendements ont toujours été deux à trois fois plus élevés avec l'intensification, quel que soit le scénario de réchauffement. Bien que la variabilité du rendement ait augmenté avec l'intensification, il n'y avait aucune interaction avec le scénario de réchauffement. Une analyse des risques et du marché est nécessaire pour étendre ces résultats afin de comprendre les implications pour la sécurité alimentaire. Para reducir los riesgos del cambio climático, los gobiernos acordaron en el Acuerdo de París limitar el aumento de la temperatura global a menos de 2,0 °C por encima de los niveles preindustriales, con la ambición de mantener el calentamiento a 1,5 °C. El trazado de las respuestas de mitigación apropiadas requiere información sobre los costos de la mitigación frente a los daños asociados para los dos niveles de calentamiento. En esta evaluación, una consideración crítica es el impacto en los rendimientos de los cultivos y la variabilidad del rendimiento en las regiones actualmente desafiadas por la inseguridad alimentaria. El estudio actual evaluó los impactos de 1,5 °C frente a 2,0 °C en los rendimientos de maíz, mijo perla y sorgo en la sabana de Sudán de África Occidental utilizando dos modelos de cultivo que se calibraron con variedades comunes de experimentos en la región con un manejo que refleja una gama de ventanas de siembra típicas. A medida que se promueve la intensificación sostenible en la región para mejorar la seguridad alimentaria, se realizaron simulaciones tanto para el uso actual de fertilizantes como para un caso de intensificación (fertilidad no limitante). Con el uso actual de fertilizantes, los resultados indicaron pérdidas un 2% mayores para el maíz y el sorgo con 2,0 °C en comparación con el calentamiento de 1,5 °C, sin cambios en los rendimientos de mijo para ninguno de los dos escenarios. En el caso de la intensificación, las pérdidas de rendimiento debido al cambio climático fueron mayores que con los niveles actuales de fertilizantes. Sin embargo, a pesar de las mayores pérdidas, los rendimientos siempre fueron de dos a tres veces más altos con la intensificación, independientemente del escenario de calentamiento. Aunque la variabilidad del rendimiento aumentó con la intensificación, no hubo interacción con el escenario de calentamiento. Se necesitan análisis de riesgos y de mercado para ampliar estos resultados y comprender las implicaciones para la seguridad alimentaria. To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security. للحد من مخاطر تغير المناخ، اتفقت الحكومات في اتفاقية باريس على الحد من ارتفاع درجة الحرارة العالمية إلى أقل من 2.0 درجة مئوية فوق مستويات ما قبل الصناعة، مع طموح للحفاظ على ارتفاع درجة الحرارة إلى 1.5 درجة مئوية. يتطلب رسم استجابات التخفيف المناسبة معلومات عن تكاليف التخفيف مقابل الأضرار المرتبطة بمستويي الاحترار. في هذا التقييم، يتمثل أحد الاعتبارات الهامة في التأثير على غلة المحاصيل وتقلب الغلة في المناطق التي تواجه حاليًا انعدام الأمن الغذائي. قيمت الدراسة الحالية تأثيرات 1.5 درجة مئوية مقابل 2.0 درجة مئوية على غلة الذرة والدخن اللؤلؤي والذرة الرفيعة في سافانا غرب إفريقيا باستخدام نموذجين للمحاصيل تمت معايرتهما بأصناف شائعة من التجارب في المنطقة مع الإدارة التي تعكس مجموعة من نوافذ البذر النموذجية. ومع تعزيز التكثيف المستدام في المنطقة لتحسين الأمن الغذائي، أجريت عمليات محاكاة لكل من الاستخدام الحالي للأسمدة وحالة التكثيف (الخصوبة غير محدودة). مع استخدام الأسمدة الحالي، أشارت النتائج إلى خسائر أعلى بنسبة 2 ٪ للذرة والذرة الرفيعة مع 2.0 درجة مئوية مقارنة بالاحترار 1.5 درجة مئوية، مع عدم وجود تغيير في غلة الدخن لأي من السيناريوهين. في حالة التكثيف، كانت خسائر الغلة بسبب تغير المناخ أكبر من مستويات الأسمدة الحالية. ومع ذلك، على الرغم من الخسائر الأكبر، كانت الغلة دائمًا أعلى مرتين إلى ثلاث مرات مع التكثيف، بغض النظر عن سيناريو الاحترار. على الرغم من زيادة تقلب المحصول مع التكثيف، لم يكن هناك تفاعل مع سيناريو الاحترار. هناك حاجة إلى تحليل المخاطر والسوق لتوسيع نطاق هذه النتائج لفهم الآثار المترتبة على الأمن الغذائي.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)DLR publication serverArticle . 2018 . Peer-reviewedFull-Text: http://elib.dlr.de/119146/1/pdf.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)DLR publication serverArticle . 2018 . Peer-reviewedFull-Text: http://elib.dlr.de/119146/1/pdf.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Adam, Myriam; Maccarthy, Dilys Sefakor; Traoré, Pierre; Nenkam, Andree; Freduah, Bright Salah; Ly, Mouhamed; Adiku, Samuel G.K.;handle: 10568/109082
Abstract The productivity of smallholder farming systems is held back by poor soil fertility, low input levels and erratic rainfall distribution in the sorghum-based cropping systems of the Sudano-Sahelian zone of West Africa. We assessed the sensitivity of current agricultural practices to climate change and to improved management practices: (i) increased fertilizer application combined with increased plant populations and (ii) use of improved sorghum varieties. We applied the Decision Support Systems for Agro-Technological Transfer (DSSAT) Cropping Systems Model, and the Agricultural Production Systems sIMulator (APSIM), for a multiple-farm assessment (i.e. diverse types of management and soils) in Koutiala (Mali) and Navrongo (Ghana), which are representative sites for West African sorghum production systems. Baseline climate data from observed weather (1980–2009) and future climates from five Global Circulation Models (GCMs: 2040–2069) in two Representative Concentration Pathways (RCP 4.5 and 8.5) were used as inputs for crop models. In Navrongo, under current management, sorghum yields either decreased or increased compared to the baseline, depending on the crop models and the GCMs; changes in management options induced a yield increase of up to 256%. The addition of genetic improvement resulted in further yield increases (24%). In Koutiala, sorghum yield changes for future climates ranged from −38 to +8% assuming current management. Shifting to an improved cultivar had a marginal effect on grain yields, while increased fertilizer rates resulted in grain yield increases ranging of 20% and 153% for DSSAT and APSIM, respectively, assuming the current climate. We conclude that in the Sudano-Sahelian zone of West Africa sorghum, as it is cultivated today, appears moderately vulnerable to climate change, while doubling fertilizer inputs with an adjusted planting density, in the current climate, would more than double yields. However, by exploring farm diversity we established that, under certain conditions, the effect of the future climate might be as important as the effect of management changes in the current climate, hinting at the importance of locally-relevant management practices.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/109082Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/109082Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV M. Diancoumba; D. MacCarthy; H. Webber; F. Akinseye; B. Faye; F. Noulèkoun; A. Whitbread; M. Corbeels; N. Worou;handle: 10568/130769
Rainfed agriculture is at the centre of many West African economies and a key livelihood strategy in the region. Highly variable rainfall patterns lead to a situation in which farmers’ investments to increase productivity are very risky and will become more risky with climate change. Process-based cropping system models are a key tool to assess the impact of weather variability and climate change, as well as the effect of crop management options on crop yields, soil fertility and farming system resilience and widely used by the West African scientific community. Challenges to use are related to their consideration of the prevailing systems and conditions of West African farms, as well as limited data availability for calibration. We outline here a number of factors need to be considered if they are to contribute to the scientific basis underlying transformation of farming systems towards sustainability. These include: capacity building, improved models, FAIR data, research partnerships and using models in co-development settings.
Global Food Security arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Food Security arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Dilys S. MacCarthy; Pierre S. Traore; Bright S. Freduah; Samuel G. K. Adiku; Daniel E. Dodor; Samuel K. Kumahor;The production of soybean is gaining more attention in West Africa. In light of projected changes in climate, there is a need to assess the potential impacts on yield productivity and variability among farmers. An evaluated GROPGRO module of the Decision Support System for Agro-technological Transfer (DSSAT) was used to simulate soybean productivity under both historical (1980–2009) and projected climate scenarios from multiple general circulation models (GCMs) under two representative concentration pathways (RCPs): 4.5 and 8.5. Agronomic data from 90 farms, as well as multiple soil profile data, were also used for the impact assessment. Climate change leads to a reduction (3% to 13.5% across GCMs and RCPs) in the productivity of soybean in Northern Ghana. However, elevated atmospheric carbon dioxide has the potential to offset the negative impact, resulting in increased (14.8% to 31.3% across GCMs and RCPs) productivity. The impact of climate change on yield varied widely amongst farms (with relative standard deviation (RSD) ranging between 17% and 35%) and across years (RSD of between 10% and 15%). Diversity in management practices, as well as differences in soils, explained the heterogeneity in impact among farms. Variability among farms was higher than that among years. The strategic management of cultural practices provides an option to enhance the resilience of soybean productivity among smallholders.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/11/2614/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/11/2614/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Wiley Falconnier, Gatien N.; Corbeels, Marc; Boote, Kenneth J.; Affholder, François; Adam, Myriam; MacCarthy, Dilys S.; Ruane, Alex C.; Nendel, Claas; Whitbread, Anthony M.; Justes, Éric; Ahuja, Lajpat R.; Akinseye, Folorunso M.; Alou, Isaac N.; Amouzou, Kokou A.; Anapalli, Saseendran S.; Baron, Christian; Basso, Bruno; Baudron, Frédéric; Bertuzzi, Patrick; Challinor, Andrew J.; Chen, Yi; Deryng, Delphine; Elsayed, Maha L.; Faye, Babacar; Gaiser, Thomas; Galdos, Marcelo; Gayler, Sebastian; Gerardeaux, Edward; Giner, Michel; Grant, Brian; Hoogenboom, Gerrit; Ibrahim, Esther S.; Kamali, Bahareh; Kersebaum, Kurt Christian; Kim, Soo‐Hyung; Laan, Michael; Leroux, Louise; Lizaso, Jon I.; Maestrini, Bernardo; Meier, Elizabeth A.; Mequanint, Fasil; Ndoli, Alain; Porter, Cheryl H.; Priesack, Eckart; Ripoche, Dominique; Sida, Tesfaye S.; Singh, Upendra; Smith, Ward N.; Srivastava, Amit; Sinha, Sumit; Tao, Fulu; Thorburn, Peter J.; Timlin, Dennis; Traore, Bouba; Twine, Tracy; Webber; Heidi;AbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Dilys S. MacCarthy; Myriam Adam; Bright S. Freduah; Benedicta Yayra Fosu-Mensah; +4 AuthorsDilys S. MacCarthy; Myriam Adam; Bright S. Freduah; Benedicta Yayra Fosu-Mensah; Peter A. Y. Ampim; Mouhamed Ly; Pierre S. Traore; Samuel G. K. Adiku;doi: 10.3390/su13095191
handle: 10625/63326
Agriculture in West Africa is constrained by several yield-limiting factors, such as poor soil fertility, erratic rainfall distributions and low input systems. Projected changes in climate, thus, pose a threat since crop production is mainly rain-fed. The impact of climate change and its variation on the productivity of cereals in smallholder settings under future production systems in Navrongo, Ghana and Nioro du Rip, Senegal was assessed in this study. Data on management practices obtained from household surveys and projected agricultural development pathways (through stakeholder engagements), soil data, weather data (historical: 1980–2009 and five General Circulation Models; mid-century time slice 2040–2069 for two Representative Concentration Pathways; 4.5 and 8.5) were used for the impact assessment, employing a crop simulation model. Ensemble maize yield changes under the sustainable agricultural development pathway (SDP) were −13 and −16%, while under the unsustainable development pathway (USDP), yield changes were −19 and −20% in Navrongo and Nioro du Rip, respectively. The impact on sorghum and millet were lower than that on maize. Variations in climate change impact among smallholders were high with relative standard deviations (RSD) of between 14% and 60% across the cereals with variability being higher under the USDP, except for millet. Agricultural production systems with higher intensification but with less emphasis on soil conservation (USDP) will be more negatively impacted by climate change compared to relatively sustainable ones (SDP).
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Bright Freduah; Dilys MacCarthy; Myriam Adam; Mouhamed Ly; Alex Ruane; Eric Timpong-Jones; Pierre Traore; Kenneth Boote; Cheryl Porter; Samuel Adiku;handle: 10568/107772
Climate change is estimated to exacerbate existing challenges faced by smallholder farmers in Sub-Sahara Africa. However, limited studies quantify the extent of variation in climate change impact under these systems at the local scale. The Decision Support System for Agro-technological Transfer (DSSAT) was used to quantify variation in climate change impacts on maize yield under current agricultural practices in semi-arid regions of Senegal (Nioro du Rip) and Ghana (Navrongo and Tamale). Multi-benchmark climate models (Mid-Century, 2040–2069 for two Representative Concentration Pathways, RCP4.5 and RCP8.5), and multiple soil and management information from agronomic surveys were used as input for DSSAT. The average impact of climate scenarios on grain yield among farms ranged between −9% and −39% across sites. Substantial variation in climate response exists across farms in the same farming zone with relative standard deviations from 8% to 117% at Nioro du Rip, 13% to 64% in Navrongo and 9% to 37% in Tamale across climate models. Variations in fertilizer application, planting dates and soil types explained the variation in the impact among farms. This study provides insight into the complexities of the impact of climate scenarios on maize yield and the need for better representation of heterogeneous farming systems for optimized outcomes in adaptation and resilience planning in smallholder systems.
Agronomy arrow_drop_down AgronomyOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4395/9/10/639/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/107772Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4395/9/10/639/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/107772Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Labake Ogunkanmi; Dilys S. MacCarthy; Samuel G. K. Adiku;Climate change is a major environmental stressor that would adversely affect tropical agriculture, which is largely rain-fed. Associated with climate change is an increasing trend in temperature and decline in rainfall, leading to prolonged and repeated droughts. The purpose of this study was to determine the effect of climate variables such as temperature, relative humidity, vapor pressure deficit (VPD), and soil water on the phenology, biomass, and grain yield of soybean crops. A greenhouse experiment was set in a split plot design with three average environmental conditions as the main plots: E1 (36 °C, RH = 55%), E2 (34 °C, RH = 57%) and E3 (33 °C, RH = 44%). Additionally, there were three water treatments: W1 (near saturation), W2 (Field capacity), and W3 (soil water deficit) and two soybean varieties (Afayak and Jenguma). These treatments were replicated nine times. The results showed that high temperatures (E1) accelerated the crop development, particularly at flowering. Additionally, increased atmospheric demand for water under a high temperature environment resulted in high evapotranspiration, leading to high transpiration which probably reduced photosynthetic activity of the plants and thereby contributing to biomass and grain yield loss. Biomass and yield were drastically reduced for the combined effect of high temperature (E1) and drought (W3) as compared to combined effect of ambient temperature (E3) and well-watered condition (W1). Increasing temperatures and erratic rainfall distributions associated with climate change poses a potential threat to the soybean production in Ghana.
Agriculture arrow_drop_down AgricultureOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-0472/12/1/43/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agriculture arrow_drop_down AgricultureOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-0472/12/1/43/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Authors: Dilys S. MacCarthy; Robert B. Zougmoré; P. B. Irénikatché Akponikpè; Eric Koomson; +2 AuthorsDilys S. MacCarthy; Robert B. Zougmoré; P. B. Irénikatché Akponikpè; Eric Koomson; Patrice Savadogo; S.G.K. Adiku;handle: 10568/92032
The emission of greenhouse gases (GHGs) results in global warming and climate change. The extent to which developing countries contribute to GHG emissions is not well known. This study reports findings on the effects of different land-use systems on GHG emissions (CO2 in this case) from two locations in the southern zone of Ghana, West Africa. Site one (located at Kpong) contained a heavy clay soil while site two (located at Legon) contained a light-textured sandy soil. Land-use systems include cattle kraals, natural forests, cultivated maize fields, and rice paddy fields at site one, and natural forest, woodlots, and cultivated soya bean fields at site two. CO2 emissions were measured using the gas entrapment method (PVC chambers). Trapping solutions were changed every 12–48 h and measurement lasted 9 to 15 days depending on the site. We found that, for the same land-use, CO2 emissions were higher on the clay soil (Kpong) than the sandy soil (Legon). In the clay soil environment, the highest average CO2 emission was observed from the cattle kraal (256.7 mg·m−2·h−1), followed by the forest (146.0 mg·m−2·h−1) and rice paddy (140.6 mg·m−2·h−1) field. The lowest average emission was observed for maize cropped land (112.0 mg·m−2·h−1). In the sandy soil environment, the highest average CO2 emission was observed from soya cropped land (52.5 mg·m−2·h−1), followed by the forest (47.4 mg·m−2·h−1) and woodlot (33.7 mg·m−2·h−1). Several factors influenced CO2 emissions from the different land-use systems. These include the inherent properties of the soils such as texture, temperature, and moisture content, which influenced CO2 production through their effect on soil microbial activity and root respiration. Practices that reduce CO2 emissions are likely to promote carbon sequestration, which will consequently maintain or increase crop productivity and thereby improve global or regional food security.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92032Data sources: Bielefeld Academic Search Engine (BASE)Applied and Environmental Soil ScienceArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92032Data sources: Bielefeld Academic Search Engine (BASE)Applied and Environmental Soil ScienceArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2023Publisher:Burleigh Dodds Science Publishing MacCarthy, D S; Akponikpe, P B I; Akinseye, F M; Ly, M; Timpong-Jones, E C; Hathie, I; Adiku, S G K;Agriculture involves approximately 60% of the population and contributes significantly to the Gross Domestic Product (GDP) of the majority of West African countries. Agricultural productivity in the sub-region is projected to be adversely impacted by climate change. The sustainability of West African agriculture in the face of climate change depends on a thorough appreciation of its impact and the adaptation options available. This chapter begins with an overview of West Africa as a region, followed by an overview of West African climatic conditions. The chapter then provides a meta-analysis of studies investigating the effects of climate change on West Africa. It also highlights challenges in modeling the varied and distinctive characteristics of West African farming systems as well as potential adaptation options. The next section reviews the impact of climate change on livestock production followed by a brief section on integrated climate change impact assessment. The chapter ends with future developments and links to further reading.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.19103/as.20...Part of book or chapter of book . 2023 . Peer-reviewedData sources: CrossrefICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.19103/as.20...Part of book or chapter of book . 2023 . Peer-reviewedData sources: CrossrefICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:IOP Publishing Babacar Faye; Heidi Webber; Jesse B. Naab; Dilys S. MacCarthy; Myriam Adam; Frank Ewert; John P. A. Lamers; Carl‐Friedrich Schleussner; Alex C. Ruane; Ursula Geßner; Gerrit Hoogenboom; Kenneth J. Boote; Vakhtang Shelia; Fahad Saeed; Dominik Wisser; Sofia Hadir; Patrick Laux; Thomas Gaiser;Pour réduire les risques du changement climatique, les gouvernements ont convenu dans l'Accord de Paris de limiter l'augmentation de la température mondiale à moins de 2,0 °C par rapport aux niveaux préindustriels, avec l'ambition de maintenir le réchauffement à 1,5 °C. La cartographie des réponses d'atténuation appropriées nécessite des informations sur les coûts d'atténuation par rapport aux dommages associés pour les deux niveaux de réchauffement. Dans cette évaluation, une considération critique est l'impact sur les rendements des cultures et la variabilité des rendements dans les régions actuellement confrontées à l'insécurité alimentaire. La présente étude a évalué les impacts de 1,5 °C par rapport à 2,0 °C sur les rendements du maïs, du millet perlé et du sorgho dans la savane soudanaise d'Afrique de l'Ouest en utilisant deux modèles de culture qui ont été calibrés avec des variétés communes issues d'expériences dans la région, la gestion reflétant une gamme de fenêtres de semis typiques. Comme l'intensification durable est encouragée dans la région pour améliorer la sécurité alimentaire, des simulations ont été menées à la fois pour l'utilisation actuelle d'engrais et pour un cas d'intensification (fertilité non limitative). Avec l'utilisation actuelle d'engrais, les résultats ont indiqué des pertes plus élevées de 2 % pour le maïs et le sorgho avec 2,0 °C par rapport au réchauffement de 1,5 °C, sans changement dans les rendements en mil pour aucun des scénarios. Dans le cas de l'intensification, les pertes de rendement dues au changement climatique étaient plus importantes qu'avec les niveaux actuels d'engrais. Cependant, malgré les pertes plus importantes, les rendements ont toujours été deux à trois fois plus élevés avec l'intensification, quel que soit le scénario de réchauffement. Bien que la variabilité du rendement ait augmenté avec l'intensification, il n'y avait aucune interaction avec le scénario de réchauffement. Une analyse des risques et du marché est nécessaire pour étendre ces résultats afin de comprendre les implications pour la sécurité alimentaire. Para reducir los riesgos del cambio climático, los gobiernos acordaron en el Acuerdo de París limitar el aumento de la temperatura global a menos de 2,0 °C por encima de los niveles preindustriales, con la ambición de mantener el calentamiento a 1,5 °C. El trazado de las respuestas de mitigación apropiadas requiere información sobre los costos de la mitigación frente a los daños asociados para los dos niveles de calentamiento. En esta evaluación, una consideración crítica es el impacto en los rendimientos de los cultivos y la variabilidad del rendimiento en las regiones actualmente desafiadas por la inseguridad alimentaria. El estudio actual evaluó los impactos de 1,5 °C frente a 2,0 °C en los rendimientos de maíz, mijo perla y sorgo en la sabana de Sudán de África Occidental utilizando dos modelos de cultivo que se calibraron con variedades comunes de experimentos en la región con un manejo que refleja una gama de ventanas de siembra típicas. A medida que se promueve la intensificación sostenible en la región para mejorar la seguridad alimentaria, se realizaron simulaciones tanto para el uso actual de fertilizantes como para un caso de intensificación (fertilidad no limitante). Con el uso actual de fertilizantes, los resultados indicaron pérdidas un 2% mayores para el maíz y el sorgo con 2,0 °C en comparación con el calentamiento de 1,5 °C, sin cambios en los rendimientos de mijo para ninguno de los dos escenarios. En el caso de la intensificación, las pérdidas de rendimiento debido al cambio climático fueron mayores que con los niveles actuales de fertilizantes. Sin embargo, a pesar de las mayores pérdidas, los rendimientos siempre fueron de dos a tres veces más altos con la intensificación, independientemente del escenario de calentamiento. Aunque la variabilidad del rendimiento aumentó con la intensificación, no hubo interacción con el escenario de calentamiento. Se necesitan análisis de riesgos y de mercado para ampliar estos resultados y comprender las implicaciones para la seguridad alimentaria. To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security. للحد من مخاطر تغير المناخ، اتفقت الحكومات في اتفاقية باريس على الحد من ارتفاع درجة الحرارة العالمية إلى أقل من 2.0 درجة مئوية فوق مستويات ما قبل الصناعة، مع طموح للحفاظ على ارتفاع درجة الحرارة إلى 1.5 درجة مئوية. يتطلب رسم استجابات التخفيف المناسبة معلومات عن تكاليف التخفيف مقابل الأضرار المرتبطة بمستويي الاحترار. في هذا التقييم، يتمثل أحد الاعتبارات الهامة في التأثير على غلة المحاصيل وتقلب الغلة في المناطق التي تواجه حاليًا انعدام الأمن الغذائي. قيمت الدراسة الحالية تأثيرات 1.5 درجة مئوية مقابل 2.0 درجة مئوية على غلة الذرة والدخن اللؤلؤي والذرة الرفيعة في سافانا غرب إفريقيا باستخدام نموذجين للمحاصيل تمت معايرتهما بأصناف شائعة من التجارب في المنطقة مع الإدارة التي تعكس مجموعة من نوافذ البذر النموذجية. ومع تعزيز التكثيف المستدام في المنطقة لتحسين الأمن الغذائي، أجريت عمليات محاكاة لكل من الاستخدام الحالي للأسمدة وحالة التكثيف (الخصوبة غير محدودة). مع استخدام الأسمدة الحالي، أشارت النتائج إلى خسائر أعلى بنسبة 2 ٪ للذرة والذرة الرفيعة مع 2.0 درجة مئوية مقارنة بالاحترار 1.5 درجة مئوية، مع عدم وجود تغيير في غلة الدخن لأي من السيناريوهين. في حالة التكثيف، كانت خسائر الغلة بسبب تغير المناخ أكبر من مستويات الأسمدة الحالية. ومع ذلك، على الرغم من الخسائر الأكبر، كانت الغلة دائمًا أعلى مرتين إلى ثلاث مرات مع التكثيف، بغض النظر عن سيناريو الاحترار. على الرغم من زيادة تقلب المحصول مع التكثيف، لم يكن هناك تفاعل مع سيناريو الاحترار. هناك حاجة إلى تحليل المخاطر والسوق لتوسيع نطاق هذه النتائج لفهم الآثار المترتبة على الأمن الغذائي.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)DLR publication serverArticle . 2018 . Peer-reviewedFull-Text: http://elib.dlr.de/119146/1/pdf.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)DLR publication serverArticle . 2018 . Peer-reviewedFull-Text: http://elib.dlr.de/119146/1/pdf.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Adam, Myriam; Maccarthy, Dilys Sefakor; Traoré, Pierre; Nenkam, Andree; Freduah, Bright Salah; Ly, Mouhamed; Adiku, Samuel G.K.;handle: 10568/109082
Abstract The productivity of smallholder farming systems is held back by poor soil fertility, low input levels and erratic rainfall distribution in the sorghum-based cropping systems of the Sudano-Sahelian zone of West Africa. We assessed the sensitivity of current agricultural practices to climate change and to improved management practices: (i) increased fertilizer application combined with increased plant populations and (ii) use of improved sorghum varieties. We applied the Decision Support Systems for Agro-Technological Transfer (DSSAT) Cropping Systems Model, and the Agricultural Production Systems sIMulator (APSIM), for a multiple-farm assessment (i.e. diverse types of management and soils) in Koutiala (Mali) and Navrongo (Ghana), which are representative sites for West African sorghum production systems. Baseline climate data from observed weather (1980–2009) and future climates from five Global Circulation Models (GCMs: 2040–2069) in two Representative Concentration Pathways (RCP 4.5 and 8.5) were used as inputs for crop models. In Navrongo, under current management, sorghum yields either decreased or increased compared to the baseline, depending on the crop models and the GCMs; changes in management options induced a yield increase of up to 256%. The addition of genetic improvement resulted in further yield increases (24%). In Koutiala, sorghum yield changes for future climates ranged from −38 to +8% assuming current management. Shifting to an improved cultivar had a marginal effect on grain yields, while increased fertilizer rates resulted in grain yield increases ranging of 20% and 153% for DSSAT and APSIM, respectively, assuming the current climate. We conclude that in the Sudano-Sahelian zone of West Africa sorghum, as it is cultivated today, appears moderately vulnerable to climate change, while doubling fertilizer inputs with an adjusted planting density, in the current climate, would more than double yields. However, by exploring farm diversity we established that, under certain conditions, the effect of the future climate might be as important as the effect of management changes in the current climate, hinting at the importance of locally-relevant management practices.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/109082Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/109082Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV M. Diancoumba; D. MacCarthy; H. Webber; F. Akinseye; B. Faye; F. Noulèkoun; A. Whitbread; M. Corbeels; N. Worou;handle: 10568/130769
Rainfed agriculture is at the centre of many West African economies and a key livelihood strategy in the region. Highly variable rainfall patterns lead to a situation in which farmers’ investments to increase productivity are very risky and will become more risky with climate change. Process-based cropping system models are a key tool to assess the impact of weather variability and climate change, as well as the effect of crop management options on crop yields, soil fertility and farming system resilience and widely used by the West African scientific community. Challenges to use are related to their consideration of the prevailing systems and conditions of West African farms, as well as limited data availability for calibration. We outline here a number of factors need to be considered if they are to contribute to the scientific basis underlying transformation of farming systems towards sustainability. These include: capacity building, improved models, FAIR data, research partnerships and using models in co-development settings.
Global Food Security arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Food Security arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Dilys S. MacCarthy; Pierre S. Traore; Bright S. Freduah; Samuel G. K. Adiku; Daniel E. Dodor; Samuel K. Kumahor;The production of soybean is gaining more attention in West Africa. In light of projected changes in climate, there is a need to assess the potential impacts on yield productivity and variability among farmers. An evaluated GROPGRO module of the Decision Support System for Agro-technological Transfer (DSSAT) was used to simulate soybean productivity under both historical (1980–2009) and projected climate scenarios from multiple general circulation models (GCMs) under two representative concentration pathways (RCPs): 4.5 and 8.5. Agronomic data from 90 farms, as well as multiple soil profile data, were also used for the impact assessment. Climate change leads to a reduction (3% to 13.5% across GCMs and RCPs) in the productivity of soybean in Northern Ghana. However, elevated atmospheric carbon dioxide has the potential to offset the negative impact, resulting in increased (14.8% to 31.3% across GCMs and RCPs) productivity. The impact of climate change on yield varied widely amongst farms (with relative standard deviation (RSD) ranging between 17% and 35%) and across years (RSD of between 10% and 15%). Diversity in management practices, as well as differences in soils, explained the heterogeneity in impact among farms. Variability among farms was higher than that among years. The strategic management of cultural practices provides an option to enhance the resilience of soybean productivity among smallholders.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/11/2614/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/11/2614/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Wiley Falconnier, Gatien N.; Corbeels, Marc; Boote, Kenneth J.; Affholder, François; Adam, Myriam; MacCarthy, Dilys S.; Ruane, Alex C.; Nendel, Claas; Whitbread, Anthony M.; Justes, Éric; Ahuja, Lajpat R.; Akinseye, Folorunso M.; Alou, Isaac N.; Amouzou, Kokou A.; Anapalli, Saseendran S.; Baron, Christian; Basso, Bruno; Baudron, Frédéric; Bertuzzi, Patrick; Challinor, Andrew J.; Chen, Yi; Deryng, Delphine; Elsayed, Maha L.; Faye, Babacar; Gaiser, Thomas; Galdos, Marcelo; Gayler, Sebastian; Gerardeaux, Edward; Giner, Michel; Grant, Brian; Hoogenboom, Gerrit; Ibrahim, Esther S.; Kamali, Bahareh; Kersebaum, Kurt Christian; Kim, Soo‐Hyung; Laan, Michael; Leroux, Louise; Lizaso, Jon I.; Maestrini, Bernardo; Meier, Elizabeth A.; Mequanint, Fasil; Ndoli, Alain; Porter, Cheryl H.; Priesack, Eckart; Ripoche, Dominique; Sida, Tesfaye S.; Singh, Upendra; Smith, Ward N.; Srivastava, Amit; Sinha, Sumit; Tao, Fulu; Thorburn, Peter J.; Timlin, Dennis; Traore, Bouba; Twine, Tracy; Webber; Heidi;AbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
