- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 France, SwitzerlandPublisher:Wiley Funded by:EC | EJP SOILEC| EJP SOILAngers, Denis; Arrouays, Dominique; Cardinael, Rémi; Chenu, Claire; Corbeels, Marc; Demenois, Julien; Farrell, Mark; Martin, Manuel; Minasny, Budiman; Recous, Sylvie; Six, Johan;AbstractWe have read with interest an opinion paper recently published in the European Journal of Soil Science (Berthelin et al., 2022). This paper presents some interesting considerations, at least one of which is already well known to soil scientists working on soil organic carbon (SOC), that is, a large portion (80%–90%) of fresh carbon inputs to soil is subject to rapid mineralization. The short‐term mineralization kinetics of organic inputs is well‐known and accounted for in soil organic matter models. Thus, clearly, the long‐term predictions based on these models do not overlook short‐term mineralization. We point out that many agronomic practices can significantly contribute to SOC sequestration. If conducted responsibly whilst fully recognising the caveats, SOC sequestration can lead to a win‐win situation where agriculture can both contribute to the mitigation of climate change and adapt to it, whilst at the same time delivering other co‐benefits such as reduced soil erosion and enhanced biodiversity.Highlights Rapid mineralization of organic inputs is an important factor for soil carbon sequestration. Mineralization kinetics of organic inputs are well‐known and accounted for in soil organic matter models. Many agronomic practices can contribute significantly to SOC sequestration. SOC sequestration can lead to a win‐win situation where agriculture can both contribute to the mitigation of climate change and adapt to it.
Université de Reims ... arrow_drop_down Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2022Full-Text: https://hal.inrae.fr/hal-03655211Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03655211Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Université de Reims ... arrow_drop_down Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2022Full-Text: https://hal.inrae.fr/hal-03655211Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03655211Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, United Kingdom, France, FrancePublisher:Cambridge University Press (CUP) Traore, B.; van Wijk, M.T.; Descheemaeker, K.K.E.; Corbeels, M.; Rufino, M.C.; Giller, K.E.;handle: 10568/93483
SUMMARYAgricultural production in the Sudano–Sahelian zone of west Africa is highly vulnerable to the impacts of climate variability and climate change. The present study aimed to understand farmers’ perceptions of climate variability and change and to evaluate adaptation options together with farmers, including tactical management of planting date in combination with the use of mineral fertilizer. Farmers perceived an increase in annual rainfall variability, an increase in the occurrence of dry spells during the rainy season, and an increase in temperature. Overall, this is in line with the observed meteorological data. Drought tolerant, short maturing crop varieties and appropriate planting dates were the commonly preferred adaptation strategies to deal with climate variability. On-farm trials confirmed that planting delays significantly reduce crop yields. The use of mineral fertilizer is often promoted, but risky for smallholders: although larger fertilizer applications increased the yield of maize (Zea mays) and millet (Pennisetum glaucum) significantly, a gross margin analysis indicated that it did not lead to more profit for all farmers. We conclude that integrating management of nutrients and planting time with improved farmer access to timely weather information, especially on the onset of the rains, is critical to enhancing adaptive capacity to increased climate variability and change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/93483Data sources: Bielefeld Academic Search Engine (BASE)Experimental AgricultureArticle . 2015 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/93483Data sources: Bielefeld Academic Search Engine (BASE)Experimental AgricultureArticle . 2015 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object 2000 FrancePublisher:Array Mcmurtrie, Ross E.; Halliday, Joanne C.; Dewar, Roderick; Tate, Kevin R.; Corbeels, Marc; Scott, Neal A.;Recent experimental studies have revealed that soil carbon (C) and nitrogen (N) content and soil N availability often decrease following conversion of improved pasture to Pinus radiata plantations. These decreases are a concern partly because of possible negative consequences for future forest productivity. This issue is investigated by applying the G'DAY model of C and N cycling in pasture and forest ecosystems to simulate the replacement of improved, legume-rich pasture by P. radiata plantations that are grown over several harvest cycles at a site in New Zealand. We illustrate how process models can be used for analysing constraints on long-term productivity by performing a sensitivity analysis of G'DAY's response to various rates of N removal. We find that simulated productivity declines over successive forest rotations and that the rate of decline is sensitive to N losses through wood harvesting, slash removal, and N leakage (i.e. leaching and soil gaseous emission). However, even when these N losses are zero, forest productivity still declines because of a gradual depletion of labile soil N reserves. Simulations are used to evaluate the mean annual increment (MAI) in wood volume over forty 30-year forest rotations. With harvesting only, simulated MAI declines from 44 m(3) ha(-1)yr(-1) in the first rotation to 18 m; ha(-1)yr(-1) in the fortieth rotation. The simulated MAI in the fortieth rotation is 13 m(3) ha(-1)yr(-1) with harvesting and leakage, and 11 m(3) ha(-1)yr(-1) with harvesting, leakage and 50% slash removal. If the simulation with harvesting only is modified so N removed in harvests is replaced by an equivalent fertiliser addition, MAI is 28 m(3) ha(-1)yr(-1) in the fortieth rotation. Results presented are tentative and should be regarded with caution until the model is fully tested.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2000add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2000add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2022Publisher:CIRAD Dataverse Shumba, Armwell; Chikowo, Regis; Corbeels, Marc; Six, Johan; Thierfelder, Christian; Cardinael, Rémi;doi: 10.18167/dvn1/n7gazf
These are the raw data of the paper "Long-term tillage, residue management and crop rotation impacts on N2O and CH4 emissions on two contrasting soils in sub-humid Zimbabwe” authored by Armwell Shumba, Regis Chikowo, Marc Corbeels, Johan Six, Christian Thierfelder, Rémi Cardinael
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 France, France, France, Spain, United States, Netherlands, United States, France, GermanyPublisher:Wiley Claas Nendel; Simona Bassu; Nadine Brisson; Marc Corbeels; Eckart Priesack; Katharina Waha; Edmar Teixeira; Delphine Deryng; Jerry L. Hatfield; Iurii Shcherbak; Iurii Shcherbak; Soo-Hyung Kim; Maria Virginia Pravia; Bruno Basso; Bruno Basso; Fulu Tao; Federico Sau; Jean-Louis Durand; R.E.E. Jongschaap; Patricio Grassini; K. Christian Kersebaum; Armen R. Kemanian; Christian Biernath; Alex C. Ruane; Myriam Adam; Naresh S. Kumar; Christian Baron; Sebastian Gayler; Christoph Müller; Cesar Izaurralde; Kenneth J. Boote; Giacomo De Sanctis; James W. Jones; David Makowski; H.L. Boogaard; Dennis Timlin; Steven Hoek; Cynthia Rosenzweig; Sjaak Conijn; Jon I. Lizaso;AbstractPotential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly −0.5 Mg ha−1 per °C. Doubling [CO2] from 360 to 720 μmol mol−1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublication Server of Helmholtz Zentrum München (PuSH)Article . 2014Data sources: Publication Server of Helmholtz Zentrum München (PuSH)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublication Server of Helmholtz Zentrum München (PuSH)Article . 2014Data sources: Publication Server of Helmholtz Zentrum München (PuSH)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, NetherlandsPublisher:Elsevier BV Pablo Tittonell; Pablo Tittonell; Pablo Modernel; Pablo Modernel; Marc Corbeels; Santiago Dogliotti; W.A.H. Rossing; Stéphanie Alvarez; Valentin Picasso; Valentin Picasso;Worldwide, native grasslands are being converted to non-native pastures and cropland. This process threatens local grassland biomes as well as the livelihoods of farm families that utilize these grasslands. In the Río de la Plata grasslands region meat production and multispecies native grasslands have coexisted for more than 400 years. Low levels of meat productivity and farm income, however, trigger replacement of native grasslands by crops and leys and threaten the survival of local beef farming systems. We studied the economic and environmental performance of beef farming in the region based on interviews and field measurements on 280 case study farms with the following aims: (a) to identify the multi-functional economic and environmental performance of beef farms across the Rio de la Plata grasslands biome; (b) to identify farms with ‘outstanding’ multi-functional performance; (c) to compare performance levels with those found in other regions; and (d) to discuss the implications of the outstanding farms for the development of new systems of meat production. The representativeness of the case study farms was ascertained by comparing them with a farm typology constructed from survey data of 15,448 beef farms situated predominantly on native grasslands in Argentina, Brazil and Uruguay. We identified seven farm types on the basis of farm size, labour, farm specialization, land use and stocking rate. We identified positive deviant farms based on Pareto-ranking and compared these with a classification based on threshold values provided by experts. Out of the 280 farms, 41 were ranked as Pareto-optimal, i.e. outperformed other farms in one or more indicators without being outperformed in other indicators. Out of these, 5 were positive deviants, achieving on average 192 kg LW ha−1 yr−1 of livestock productivity and 201 US$ ha−1 year−1 farm income, having most favourable values for fossil energy consumption, phosphorus balance, carbon footprint and having over 95% of their land under native grassland as a proxy for biodiversity conservation value. Four of these farms belonged to farm types that together represented 55% of the population, suggesting scope for widescale improvement. Compared to the values reported for the OECD countries the beef farming systems of the Río de la Plata grasslands region consume less energy and positive deviant farms demonstrated approximately average livestock productivity and carbon footprint. Increasing livestock productivity in the Rio de la Plata grasslands region resulted in a stronger decline of the carbon footprint without compromising the current negligible levels of fossil fuel energy use. Further elucidation of management practices that lead to positive deviant performance will require modelling of the interaction of pasture and herd dynamics at farm level and is needed to support targeted policy support for sustainable natural grassland-based beef production in the region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021 FrancePublisher:Wiley Beillouin, Damien; Cardinael, Rémi; Berre, David; Boyer, Annie; Corbeels, Marc; Fallot, Abigaïl; Feder, Frédéric; Demenois, Julien;doi: 10.1111/gcb.15998
pmid: 34873793
AbstractMajor drivers of gains or losses in soil organic carbon (SOC) include land management, land‐use change, and climate change. Thousands of original studies have focused on these drivers of SOC change and are now compiled in a growing number of meta‐analyses. To critically assess the research efforts in this domain, we retrieved and characterized 192 meta‐analyses of SOC stocks or concentrations. These meta‐analyses comprise more than 13,200 original studies conducted from 1910 to 2020 in 150 countries. First, we show that, despite a growing number of studies over time, the geographical coverage of studies is limited. For example, the effect of land management, land‐use change, and climate change on SOC has been only occasionally studied in North and Central Africa, and in the Middle East and Central Asia. Second, the meta‐analyses investigated a limited number of land management practices, mostly mineral fertilization, organic amendments, and tillage. Third, the meta‐analyses demonstrated relatively low quality and transparency. Lastly, we discuss the mismatch between the increasing number of studies and the need for more local, reusable, and diversified knowledge on how to preserve high SOC stocks or restore depleted SOC stocks.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020 Canada, Canada, Australia, India, India, France, Finland, France, South Africa, FrancePublisher:Wiley Falconnier, Gatien N.; Corbeels, Marc; Boote, Kenneth J.; Affholder, François; Adam, Myriam; MacCarthy, Dilys S.; Ruane, Alex C.; Nendel, Claas; Whitbread, Anthony M.; Justes, Éric; Ahuja, Lajpat R.; Akinseye, Folorunso M.; Alou, Isaac N.; Amouzou, Kokou A.; Anapalli, Saseendran S.; Baron, Christian; Basso, Bruno; Baudron, Frédéric; Bertuzzi, Patrick; Challinor, Andrew J.; Chen, Yi; Deryng, Delphine; Elsayed, Maha L.; Faye, Babacar; Gaiser, Thomas; Galdos, Marcelo; Gayler, Sebastian; Gerardeaux, Edward; Giner, Michel; Grant, Brian; Hoogenboom, Gerrit; Ibrahim, Esther S.; Kamali, Bahareh; Kersebaum, Kurt Christian; Kim, Soo‐Hyung; Laan, Michael; Leroux, Louise; Lizaso, Jon I.; Maestrini, Bernardo; Meier, Elizabeth A.; Mequanint, Fasil; Ndoli, Alain; Porter, Cheryl H.; Priesack, Eckart; Ripoche, Dominique; Sida, Tesfaye S.; Singh, Upendra; Smith, Ward N.; Srivastava, Amit; Sinha, Sumit; Tao, Fulu; Thorburn, Peter J.; Timlin, Dennis; Traore, Bouba; Twine, Tracy; Webber; Heidi;AbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Netherlands, France, United Kingdom, France, FrancePublisher:Elsevier BV Marc Corbeels; Mariana C. Rufino; Mark T. van Wijk; Mark T. van Wijk; Bouba Sidi Traoré; Ken E. Giller;handle: 10568/28965
In West Africa predictions of future changes in climate and especially rainfall are highly uncertain, and up to now no long-term analyses are available of the effects of climate on crop production. This study analyses long-term trends in climate variability at N'Tarla and Sikasso in southern Mali using a weather dataset from 1965 to 2005. Climatic variables and crop productivity were analysed using data from an experiment conducted from 1965 to 1993 at N'Tarla and from a crop yield database from ten cotton growing districts of southern Mali. Minimum daily air temperature increased on average by 0.05 degrees C per year during the period from 1965 to 2005 while maximum daily air temperature remained constant. Seasonal rainfall showed large inter-annual variability with no significant change over the 1965-2005 period. However, the total number of dry days within the growing season increased significantly at N'Tarla, indicating a change in rainfall distribution. Yields of cotton, sorghum and groundnut at the NTarla experiment varied (30%) without any clear trend over the years. There was a negative effect of maximum temperature, number of dry days and total seasonal rainfall on cotton yield. The variation in cotton yields was related to the rainfall distribution within the, rainfall season, with dry spells and seasonal dry days being key determinants of crop yield. In the driest districts, maize yields were positively correlated with rainfall. Our study shows that cotton production in southern Mali is affected by climate change, in particular through changes in the rainfall distribution. (C) 2013 Elsevier B.V. All rights reserved.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2013Full-Text: https://hdl.handle.net/10568/28965Data sources: Bielefeld Academic Search Engine (BASE)European Journal of AgronomyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Lancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2013Full-Text: https://hdl.handle.net/10568/28965Data sources: Bielefeld Academic Search Engine (BASE)European Journal of AgronomyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Lancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Netherlands, France, India, France, France, IndiaPublisher:Elsevier BV Marc Corbeels; Marc Corbeels; Bouba Sidi Traoré; Katrien Descheemaeker; Ken E. Giller; Iwan Supit; Mark T. van Wijk;handle: 10568/78139
Future climate change will have far reaching consequences for smallholder farmers in sub-Saharan Africa, the majority of whom depend on agriculture for their livelihoods. Here we assessed the farm-level impact of climate change on family food self-sufficiency and evaluated potential adaptation options of crop management. Using three years of experimental data on maize and millet from an area in southern Mali representing the Sudano-Sahelian zone of West Africa we calibrated and tested the Agricultural Production Systems sIMulator (APSIM) model. Changes in future rainfall, maximum and minimum temperature and their simulated effects on maize and millet yield were analysed for climate change predictions of five Global Circulation Models (GCMs) for the 4.5 Wm−2 and 8.5 Wm−2 radiative forcing scenario (rcp4.5 and rcp8.5). In southern Mali, annual maximum and minimum temperatures will increase by 2.9 °C and 3.3 °C by the mid-century (2040–2069) as compared with the baseline (1980–2009) under the rcp4.5 and rcp8.5 scenario respectively. Predicted changes in the total seasonal rainfall differed between the GCMs, but on average, seasonal rainfall was predicted not to change. By mid-century maize grain yields were predicted to decrease by 51% and 57% under current farmer's fertilizer practices in the rcp4.5 and rcp8.5 scenarios respectively. APSIM model predictions indicated that the use of mineral fertilizer at recommended rates cannot fully offset the impact of climate change but can buffer the losses in maize yield up to 46% and 51% of the baseline yield. Millet yield losses were predicted to be less severe under current farmer's fertilizer practices by mid-century i.e. 7% and 12% in the rcp4.5 and rcp8.5 scenario respectively. Use of mineral fertilizer on millet can offset the predicted yield losses resulting in yield increases under both emission scenarios. Under future climate and current cropping practices, food availability is expected to reduce for all farm types in southern Mali. However, large and medium-sized farms can still achieve food self–sufficiency if early planting and recommended rates of fertilizer are applied. Small farms, which are already food insecure, will experience a further decrease in food self-sufficiency, with adaptive measures of early planting and fertilizer use unable to help them achieve food self-sufficiency. By taking into account the diversity in farm households that is typical for the region, we illustrated that crop management strategies must be tailored to the capacity and resource endowment of local farmers. Our place-based findings can support decision making by extension and development agents and policy makers in the Sudano-Sahelian zone of West Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 France, SwitzerlandPublisher:Wiley Funded by:EC | EJP SOILEC| EJP SOILAngers, Denis; Arrouays, Dominique; Cardinael, Rémi; Chenu, Claire; Corbeels, Marc; Demenois, Julien; Farrell, Mark; Martin, Manuel; Minasny, Budiman; Recous, Sylvie; Six, Johan;AbstractWe have read with interest an opinion paper recently published in the European Journal of Soil Science (Berthelin et al., 2022). This paper presents some interesting considerations, at least one of which is already well known to soil scientists working on soil organic carbon (SOC), that is, a large portion (80%–90%) of fresh carbon inputs to soil is subject to rapid mineralization. The short‐term mineralization kinetics of organic inputs is well‐known and accounted for in soil organic matter models. Thus, clearly, the long‐term predictions based on these models do not overlook short‐term mineralization. We point out that many agronomic practices can significantly contribute to SOC sequestration. If conducted responsibly whilst fully recognising the caveats, SOC sequestration can lead to a win‐win situation where agriculture can both contribute to the mitigation of climate change and adapt to it, whilst at the same time delivering other co‐benefits such as reduced soil erosion and enhanced biodiversity.Highlights Rapid mineralization of organic inputs is an important factor for soil carbon sequestration. Mineralization kinetics of organic inputs are well‐known and accounted for in soil organic matter models. Many agronomic practices can contribute significantly to SOC sequestration. SOC sequestration can lead to a win‐win situation where agriculture can both contribute to the mitigation of climate change and adapt to it.
Université de Reims ... arrow_drop_down Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2022Full-Text: https://hal.inrae.fr/hal-03655211Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03655211Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Université de Reims ... arrow_drop_down Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2022Full-Text: https://hal.inrae.fr/hal-03655211Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03655211Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, United Kingdom, France, FrancePublisher:Cambridge University Press (CUP) Traore, B.; van Wijk, M.T.; Descheemaeker, K.K.E.; Corbeels, M.; Rufino, M.C.; Giller, K.E.;handle: 10568/93483
SUMMARYAgricultural production in the Sudano–Sahelian zone of west Africa is highly vulnerable to the impacts of climate variability and climate change. The present study aimed to understand farmers’ perceptions of climate variability and change and to evaluate adaptation options together with farmers, including tactical management of planting date in combination with the use of mineral fertilizer. Farmers perceived an increase in annual rainfall variability, an increase in the occurrence of dry spells during the rainy season, and an increase in temperature. Overall, this is in line with the observed meteorological data. Drought tolerant, short maturing crop varieties and appropriate planting dates were the commonly preferred adaptation strategies to deal with climate variability. On-farm trials confirmed that planting delays significantly reduce crop yields. The use of mineral fertilizer is often promoted, but risky for smallholders: although larger fertilizer applications increased the yield of maize (Zea mays) and millet (Pennisetum glaucum) significantly, a gross margin analysis indicated that it did not lead to more profit for all farmers. We conclude that integrating management of nutrients and planting time with improved farmer access to timely weather information, especially on the onset of the rains, is critical to enhancing adaptive capacity to increased climate variability and change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/93483Data sources: Bielefeld Academic Search Engine (BASE)Experimental AgricultureArticle . 2015 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/93483Data sources: Bielefeld Academic Search Engine (BASE)Experimental AgricultureArticle . 2015 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object 2000 FrancePublisher:Array Mcmurtrie, Ross E.; Halliday, Joanne C.; Dewar, Roderick; Tate, Kevin R.; Corbeels, Marc; Scott, Neal A.;Recent experimental studies have revealed that soil carbon (C) and nitrogen (N) content and soil N availability often decrease following conversion of improved pasture to Pinus radiata plantations. These decreases are a concern partly because of possible negative consequences for future forest productivity. This issue is investigated by applying the G'DAY model of C and N cycling in pasture and forest ecosystems to simulate the replacement of improved, legume-rich pasture by P. radiata plantations that are grown over several harvest cycles at a site in New Zealand. We illustrate how process models can be used for analysing constraints on long-term productivity by performing a sensitivity analysis of G'DAY's response to various rates of N removal. We find that simulated productivity declines over successive forest rotations and that the rate of decline is sensitive to N losses through wood harvesting, slash removal, and N leakage (i.e. leaching and soil gaseous emission). However, even when these N losses are zero, forest productivity still declines because of a gradual depletion of labile soil N reserves. Simulations are used to evaluate the mean annual increment (MAI) in wood volume over forty 30-year forest rotations. With harvesting only, simulated MAI declines from 44 m(3) ha(-1)yr(-1) in the first rotation to 18 m; ha(-1)yr(-1) in the fortieth rotation. The simulated MAI in the fortieth rotation is 13 m(3) ha(-1)yr(-1) with harvesting and leakage, and 11 m(3) ha(-1)yr(-1) with harvesting, leakage and 50% slash removal. If the simulation with harvesting only is modified so N removed in harvests is replaced by an equivalent fertiliser addition, MAI is 28 m(3) ha(-1)yr(-1) in the fortieth rotation. Results presented are tentative and should be regarded with caution until the model is fully tested.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2000add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2000add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2022Publisher:CIRAD Dataverse Shumba, Armwell; Chikowo, Regis; Corbeels, Marc; Six, Johan; Thierfelder, Christian; Cardinael, Rémi;doi: 10.18167/dvn1/n7gazf
These are the raw data of the paper "Long-term tillage, residue management and crop rotation impacts on N2O and CH4 emissions on two contrasting soils in sub-humid Zimbabwe” authored by Armwell Shumba, Regis Chikowo, Marc Corbeels, Johan Six, Christian Thierfelder, Rémi Cardinael
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 France, France, France, Spain, United States, Netherlands, United States, France, GermanyPublisher:Wiley Claas Nendel; Simona Bassu; Nadine Brisson; Marc Corbeels; Eckart Priesack; Katharina Waha; Edmar Teixeira; Delphine Deryng; Jerry L. Hatfield; Iurii Shcherbak; Iurii Shcherbak; Soo-Hyung Kim; Maria Virginia Pravia; Bruno Basso; Bruno Basso; Fulu Tao; Federico Sau; Jean-Louis Durand; R.E.E. Jongschaap; Patricio Grassini; K. Christian Kersebaum; Armen R. Kemanian; Christian Biernath; Alex C. Ruane; Myriam Adam; Naresh S. Kumar; Christian Baron; Sebastian Gayler; Christoph Müller; Cesar Izaurralde; Kenneth J. Boote; Giacomo De Sanctis; James W. Jones; David Makowski; H.L. Boogaard; Dennis Timlin; Steven Hoek; Cynthia Rosenzweig; Sjaak Conijn; Jon I. Lizaso;AbstractPotential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly −0.5 Mg ha−1 per °C. Doubling [CO2] from 360 to 720 μmol mol−1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublication Server of Helmholtz Zentrum München (PuSH)Article . 2014Data sources: Publication Server of Helmholtz Zentrum München (PuSH)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublication Server of Helmholtz Zentrum München (PuSH)Article . 2014Data sources: Publication Server of Helmholtz Zentrum München (PuSH)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, NetherlandsPublisher:Elsevier BV Pablo Tittonell; Pablo Tittonell; Pablo Modernel; Pablo Modernel; Marc Corbeels; Santiago Dogliotti; W.A.H. Rossing; Stéphanie Alvarez; Valentin Picasso; Valentin Picasso;Worldwide, native grasslands are being converted to non-native pastures and cropland. This process threatens local grassland biomes as well as the livelihoods of farm families that utilize these grasslands. In the Río de la Plata grasslands region meat production and multispecies native grasslands have coexisted for more than 400 years. Low levels of meat productivity and farm income, however, trigger replacement of native grasslands by crops and leys and threaten the survival of local beef farming systems. We studied the economic and environmental performance of beef farming in the region based on interviews and field measurements on 280 case study farms with the following aims: (a) to identify the multi-functional economic and environmental performance of beef farms across the Rio de la Plata grasslands biome; (b) to identify farms with ‘outstanding’ multi-functional performance; (c) to compare performance levels with those found in other regions; and (d) to discuss the implications of the outstanding farms for the development of new systems of meat production. The representativeness of the case study farms was ascertained by comparing them with a farm typology constructed from survey data of 15,448 beef farms situated predominantly on native grasslands in Argentina, Brazil and Uruguay. We identified seven farm types on the basis of farm size, labour, farm specialization, land use and stocking rate. We identified positive deviant farms based on Pareto-ranking and compared these with a classification based on threshold values provided by experts. Out of the 280 farms, 41 were ranked as Pareto-optimal, i.e. outperformed other farms in one or more indicators without being outperformed in other indicators. Out of these, 5 were positive deviants, achieving on average 192 kg LW ha−1 yr−1 of livestock productivity and 201 US$ ha−1 year−1 farm income, having most favourable values for fossil energy consumption, phosphorus balance, carbon footprint and having over 95% of their land under native grassland as a proxy for biodiversity conservation value. Four of these farms belonged to farm types that together represented 55% of the population, suggesting scope for widescale improvement. Compared to the values reported for the OECD countries the beef farming systems of the Río de la Plata grasslands region consume less energy and positive deviant farms demonstrated approximately average livestock productivity and carbon footprint. Increasing livestock productivity in the Rio de la Plata grasslands region resulted in a stronger decline of the carbon footprint without compromising the current negligible levels of fossil fuel energy use. Further elucidation of management practices that lead to positive deviant performance will require modelling of the interaction of pasture and herd dynamics at farm level and is needed to support targeted policy support for sustainable natural grassland-based beef production in the region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021 FrancePublisher:Wiley Beillouin, Damien; Cardinael, Rémi; Berre, David; Boyer, Annie; Corbeels, Marc; Fallot, Abigaïl; Feder, Frédéric; Demenois, Julien;doi: 10.1111/gcb.15998
pmid: 34873793
AbstractMajor drivers of gains or losses in soil organic carbon (SOC) include land management, land‐use change, and climate change. Thousands of original studies have focused on these drivers of SOC change and are now compiled in a growing number of meta‐analyses. To critically assess the research efforts in this domain, we retrieved and characterized 192 meta‐analyses of SOC stocks or concentrations. These meta‐analyses comprise more than 13,200 original studies conducted from 1910 to 2020 in 150 countries. First, we show that, despite a growing number of studies over time, the geographical coverage of studies is limited. For example, the effect of land management, land‐use change, and climate change on SOC has been only occasionally studied in North and Central Africa, and in the Middle East and Central Asia. Second, the meta‐analyses investigated a limited number of land management practices, mostly mineral fertilization, organic amendments, and tillage. Third, the meta‐analyses demonstrated relatively low quality and transparency. Lastly, we discuss the mismatch between the increasing number of studies and the need for more local, reusable, and diversified knowledge on how to preserve high SOC stocks or restore depleted SOC stocks.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020 Canada, Canada, Australia, India, India, France, Finland, France, South Africa, FrancePublisher:Wiley Falconnier, Gatien N.; Corbeels, Marc; Boote, Kenneth J.; Affholder, François; Adam, Myriam; MacCarthy, Dilys S.; Ruane, Alex C.; Nendel, Claas; Whitbread, Anthony M.; Justes, Éric; Ahuja, Lajpat R.; Akinseye, Folorunso M.; Alou, Isaac N.; Amouzou, Kokou A.; Anapalli, Saseendran S.; Baron, Christian; Basso, Bruno; Baudron, Frédéric; Bertuzzi, Patrick; Challinor, Andrew J.; Chen, Yi; Deryng, Delphine; Elsayed, Maha L.; Faye, Babacar; Gaiser, Thomas; Galdos, Marcelo; Gayler, Sebastian; Gerardeaux, Edward; Giner, Michel; Grant, Brian; Hoogenboom, Gerrit; Ibrahim, Esther S.; Kamali, Bahareh; Kersebaum, Kurt Christian; Kim, Soo‐Hyung; Laan, Michael; Leroux, Louise; Lizaso, Jon I.; Maestrini, Bernardo; Meier, Elizabeth A.; Mequanint, Fasil; Ndoli, Alain; Porter, Cheryl H.; Priesack, Eckart; Ripoche, Dominique; Sida, Tesfaye S.; Singh, Upendra; Smith, Ward N.; Srivastava, Amit; Sinha, Sumit; Tao, Fulu; Thorburn, Peter J.; Timlin, Dennis; Traore, Bouba; Twine, Tracy; Webber; Heidi;AbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Netherlands, France, United Kingdom, France, FrancePublisher:Elsevier BV Marc Corbeels; Mariana C. Rufino; Mark T. van Wijk; Mark T. van Wijk; Bouba Sidi Traoré; Ken E. Giller;handle: 10568/28965
In West Africa predictions of future changes in climate and especially rainfall are highly uncertain, and up to now no long-term analyses are available of the effects of climate on crop production. This study analyses long-term trends in climate variability at N'Tarla and Sikasso in southern Mali using a weather dataset from 1965 to 2005. Climatic variables and crop productivity were analysed using data from an experiment conducted from 1965 to 1993 at N'Tarla and from a crop yield database from ten cotton growing districts of southern Mali. Minimum daily air temperature increased on average by 0.05 degrees C per year during the period from 1965 to 2005 while maximum daily air temperature remained constant. Seasonal rainfall showed large inter-annual variability with no significant change over the 1965-2005 period. However, the total number of dry days within the growing season increased significantly at N'Tarla, indicating a change in rainfall distribution. Yields of cotton, sorghum and groundnut at the NTarla experiment varied (30%) without any clear trend over the years. There was a negative effect of maximum temperature, number of dry days and total seasonal rainfall on cotton yield. The variation in cotton yields was related to the rainfall distribution within the, rainfall season, with dry spells and seasonal dry days being key determinants of crop yield. In the driest districts, maize yields were positively correlated with rainfall. Our study shows that cotton production in southern Mali is affected by climate change, in particular through changes in the rainfall distribution. (C) 2013 Elsevier B.V. All rights reserved.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2013Full-Text: https://hdl.handle.net/10568/28965Data sources: Bielefeld Academic Search Engine (BASE)European Journal of AgronomyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Lancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2013Full-Text: https://hdl.handle.net/10568/28965Data sources: Bielefeld Academic Search Engine (BASE)European Journal of AgronomyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Lancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Netherlands, France, India, France, France, IndiaPublisher:Elsevier BV Marc Corbeels; Marc Corbeels; Bouba Sidi Traoré; Katrien Descheemaeker; Ken E. Giller; Iwan Supit; Mark T. van Wijk;handle: 10568/78139
Future climate change will have far reaching consequences for smallholder farmers in sub-Saharan Africa, the majority of whom depend on agriculture for their livelihoods. Here we assessed the farm-level impact of climate change on family food self-sufficiency and evaluated potential adaptation options of crop management. Using three years of experimental data on maize and millet from an area in southern Mali representing the Sudano-Sahelian zone of West Africa we calibrated and tested the Agricultural Production Systems sIMulator (APSIM) model. Changes in future rainfall, maximum and minimum temperature and their simulated effects on maize and millet yield were analysed for climate change predictions of five Global Circulation Models (GCMs) for the 4.5 Wm−2 and 8.5 Wm−2 radiative forcing scenario (rcp4.5 and rcp8.5). In southern Mali, annual maximum and minimum temperatures will increase by 2.9 °C and 3.3 °C by the mid-century (2040–2069) as compared with the baseline (1980–2009) under the rcp4.5 and rcp8.5 scenario respectively. Predicted changes in the total seasonal rainfall differed between the GCMs, but on average, seasonal rainfall was predicted not to change. By mid-century maize grain yields were predicted to decrease by 51% and 57% under current farmer's fertilizer practices in the rcp4.5 and rcp8.5 scenarios respectively. APSIM model predictions indicated that the use of mineral fertilizer at recommended rates cannot fully offset the impact of climate change but can buffer the losses in maize yield up to 46% and 51% of the baseline yield. Millet yield losses were predicted to be less severe under current farmer's fertilizer practices by mid-century i.e. 7% and 12% in the rcp4.5 and rcp8.5 scenario respectively. Use of mineral fertilizer on millet can offset the predicted yield losses resulting in yield increases under both emission scenarios. Under future climate and current cropping practices, food availability is expected to reduce for all farm types in southern Mali. However, large and medium-sized farms can still achieve food self–sufficiency if early planting and recommended rates of fertilizer are applied. Small farms, which are already food insecure, will experience a further decrease in food self-sufficiency, with adaptive measures of early planting and fertilizer use unable to help them achieve food self-sufficiency. By taking into account the diversity in farm households that is typical for the region, we illustrated that crop management strategies must be tailored to the capacity and resource endowment of local farmers. Our place-based findings can support decision making by extension and development agents and policy makers in the Sudano-Sahelian zone of West Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
