- home
- Advanced Search
- Energy Research
- Scientific Reports
- Energy Research
- Scientific Reports
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Malin Song; Xin Liu; Jiandong Chen; Wenxuan Hou; Ding Li; Wei Fan; Ming Gao; Shulei Cheng;AbstractAccurate, long-term, full-coverage carbon dioxide (CO2) data in units of prefecture-level cities are necessary for evaluations of CO2 emission reductions in China, which has become one of the world’s largest carbon-emitting countries. This study develops a novel method to match satellite-based Defense Meteorological Satellite Program’s Operational Landscan System (DMSP/OLS) and Suomi National Polar-orbiting Partnership’s Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) nighttime light data, and estimates the CO2 emissions of 334 prefecture-level cities in China from 1992 to 2017. Results indicated that the eastern and coastal regions had higher carbon emissions, but their carbon intensity decreased more rapidly than other regions. Compared to previous studies, we provide the most extensive and long-term CO2 dataset to date, and these data will be of great value for further socioeconomic research. Specifically, this dataset provides a foundational data source for China’s future CO2 research and emission reduction strategies. Additionally, the methodology can be applied to other regions around the world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-81754-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-81754-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Jiandong Chen; Chong Xu; Ming Gao; Ding Li;AbstractChina’s carbon peak greatly impacts global climate targets. Limited studies have comprehensively analyzed the influence of the COVID-19 pandemic, changing emission network, and recent carbon intensity (CI) reduction on the carbon peak and the corresponding mitigation implications. Using a unique dataset at different levels, we project China’s CO2 emission by 2035 and analyze the time, volume, driver patterns, complex emission network, and policy implications of China’s carbon peak in the post- pandemic era. We develop an ensemble time-series model with machine learning approaches as the projection benchmark, and show that China’s carbon peak will be achieved by 2021–2026 with > 80% probability. Most Chinese cities and counties have not achieved carbon peaks response to the priority-peak policy and the current implementation of CI reduction should thus be strengthened. While there is a "trade off" between the application of carbon emission reduction technology and economic recovery in the post-pandemic era, a close cooperation of interprovincial CO2 emission is also warranted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-07283-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-07283-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Malin Song; Xin Liu; Jiandong Chen; Wenxuan Hou; Ding Li; Wei Fan; Ming Gao; Shulei Cheng;AbstractAccurate, long-term, full-coverage carbon dioxide (CO2) data in units of prefecture-level cities are necessary for evaluations of CO2 emission reductions in China, which has become one of the world’s largest carbon-emitting countries. This study develops a novel method to match satellite-based Defense Meteorological Satellite Program’s Operational Landscan System (DMSP/OLS) and Suomi National Polar-orbiting Partnership’s Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) nighttime light data, and estimates the CO2 emissions of 334 prefecture-level cities in China from 1992 to 2017. Results indicated that the eastern and coastal regions had higher carbon emissions, but their carbon intensity decreased more rapidly than other regions. Compared to previous studies, we provide the most extensive and long-term CO2 dataset to date, and these data will be of great value for further socioeconomic research. Specifically, this dataset provides a foundational data source for China’s future CO2 research and emission reduction strategies. Additionally, the methodology can be applied to other regions around the world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-81754-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-81754-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Jiandong Chen; Chong Xu; Ming Gao; Ding Li;AbstractChina’s carbon peak greatly impacts global climate targets. Limited studies have comprehensively analyzed the influence of the COVID-19 pandemic, changing emission network, and recent carbon intensity (CI) reduction on the carbon peak and the corresponding mitigation implications. Using a unique dataset at different levels, we project China’s CO2 emission by 2035 and analyze the time, volume, driver patterns, complex emission network, and policy implications of China’s carbon peak in the post- pandemic era. We develop an ensemble time-series model with machine learning approaches as the projection benchmark, and show that China’s carbon peak will be achieved by 2021–2026 with > 80% probability. Most Chinese cities and counties have not achieved carbon peaks response to the priority-peak policy and the current implementation of CI reduction should thus be strengthened. While there is a "trade off" between the application of carbon emission reduction technology and economic recovery in the post-pandemic era, a close cooperation of interprovincial CO2 emission is also warranted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-07283-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-07283-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu