- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United States, GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Fiona Köhnke; Bettina Steuri; Lars Baetcke; Malgorzata Borchers; Torsten Brinkmann; Roland Dittmeyer; Martin Dornheim; Juliane El Zohbi; Johannes Förster; Erik Gawel; Erik Gawel; Knut Görl; Michael Herbst; Dominik Heß; Aram Kalhori; Klaas Korte; Zhan Li; Till Markus; Nadine Mengis; Nathalie Monnerie; Andreas Oschlies; Enric Prats-Salvado; Enric Prats-Salvado; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Romina Schaller; Eva Schill; Eva Schill; Sonja Simon; Angela Stevenson; Terese Thoni; Terese Thoni; Daniela Thrän; Daniela Thrän; Mengzhu Xiao; Daniela Jacob;With the amendment to the German Climate Change Act in 2021, the Federal Government of Germany has set the target to become greenhouse gas neutral by 2045. Reaching this ambitious target requires multisectoral efforts, which in turn calls for interdisciplinary collaboration: the Net-Zero-2050 project of the Helmholtz Climate Initiative serves as an example of successful, interdisciplinary collaboration with the aim of producing valuable recommendations for action to achieve net-zero CO2 emissions in Germany. To this end, we applied an interdisciplinary approach to combining comprehensive research results from ten German national research centers in the context of carbon neutrality in Germany. In this paper, we present our approach and the method behind the interdisciplinary storylines development, which enabled us to create a common framework between different carbon dioxide removal and avoidance methods and the bigger carbon neutrality context. Thus, the research findings are aggregated into narratives: the two complementary storylines focus on technologies for net-zero CO2 emissions and on different framing conditions for implementing net-zero CO2 measures. Moreover, we outline the Net-Zero-2050 results emerging from the two storylines by presenting the resulting narratives in the context of carbon neutrality in Germany. Aiming at creating insights into how complementary and related expertise can be combined in teams across disciplines, we conclude with the project’s lessons learned. This paper sheds light on how to facilitate cooperation between different science disciplines with the purpose of preparing joint research results that can be communicated to a specific audience. Additionally, it provides further evidence that interdisciplinary and diverse research teams are an essential factor for defining solution spaces for complex, interdisciplinary problems.
OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2024.1433491&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2024.1433491&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object GermanyAuthors: Kadohiro, Yasuki; Prats Salvado, Enric; Serafim Martins, Joao Humberto; Dimitrakis, Dimitrios; +9 AuthorsKadohiro, Yasuki; Prats Salvado, Enric; Serafim Martins, Joao Humberto; Dimitrakis, Dimitrios; Thomey, Dennis; Monnerie, Nathalie; Sattler, Christian; Michels, Jonas; Pfeifer, Irina; Kürten, Martin; Lanchi, M.; Liberatore, R.; Turchetti, Luca;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2c619accdc36b3e5ee2daccced76a184&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2c619accdc36b3e5ee2daccced76a184&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 GermanyPublisher:American Chemical Society (ACS) Authors: Prats Salvado, Enric; JAGTAP, NIPUN; Monnerie, Nathalie; Sattler, Christian;Direct air capture (DAC) of CO2 has gained attention as a sustainable carbon source. One of the most promising technologies currently available is liquid solvent DAC (L-DAC), but the significant fraction of fossil CO2 in the output stream hinders its utilization in carbon-neutral fuels and chemicals. Fossil CO2 is generated and captured during the combustion of fuels to calcine carbonates, which is difficult to decarbonize due to the high temperatures required. Solar thermal energy can provide green high-temperature heat, but it flourishes in arid regions where environmental conditions are typically unfavorable for L-DAC. This study proposes a solar-powered L-DAC approach and develops a model to assess the influence of the location and plant capacity on capture costs. The performed life cycle assessment enables the comparison of technologies based on net CO2 removal, demonstrating that solar-powered L-DAC is not only more environmentally friendly but also more cost-effective than conventional L-DAC.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c08269&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c08269&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Prats Salvado, Enric; Monnerie, Nathalie; Sattler, Christian;doi: 10.3390/en15145017
Non-abatable emissions are one of the decarbonization challenges that could be addressed with carbon-neutral fuels. One promising production pathway is the direct air capture (DAC) of carbon dioxide, followed by a solar thermochemical cycle and liquid fuel synthesis. In this study, we explore different combinations of these technologies to produce methanol from an economic perspective in order to determine the most efficient one. For this purpose, a model is built and simulated in Aspen Plus®, and a solar field is designed and sized with HFLCAL®. The inherent dynamics of solar irradiation were considered with the meteorological data from Meteonorm® at the chosen location (Riyadh, Saudi Arabia). Four different integration strategies are assessed by determining the minimum selling price of methanol for each technology combination. These values were compared against a baseline with no synergies between the DAC and the solar fuels production. The results show that the most economical methanol is produced with a central low-temperature DAC unit that consumes the low-quality waste heat of the downstream process. Additionally, it is determined with a sensitivity analysis that the optimal annual production of methanol is 11.8 kt/y for a solar field with a design thermal output of 280 MW.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Funded by:EC | SFERA-IIIEC| SFERA-IIIAuthors: Prats-Salvado, Enric; Monnerie, Nathalie; Sattler, Christian;doi: 10.3390/en14164818
Methanol is an example of a valuable chemical that can be produced from water and carbon dioxide through a chemical process that is fully powered by concentrated solar thermal energy and involves three steps: direct air capture (DAC), thermochemical splitting and methanol synthesis. In the present work, we consider the whole value chain from the harvesting of raw materials to the final product. We also identify synergies between the aforementioned steps and collect them in five possible scenarios aimed to reduce the specific energy consumption. To assess the scenarios, we combined data from low and high temperature DAC with an Aspen Plus® model of a plant that includes water and carbon dioxide splitting units via thermochemical cycles (TCC), CO/CO2 separation, storage and methanol synthesis. We paid special attention to the energy required for the generation of low oxygen partial pressures in the reduction step of the TCC, as well as the overall water consumption. Results show that suggested synergies, in particular, co-generation, are effective and can lead to solar-to-fuel efficiencies up to 10.2% (compared to the 8.8% baseline). In addition, we appoint vacuum as the most adequate strategy for obtaining low oxygen partial pressures.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4818/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164818&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4818/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164818&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 GermanyAuthors: Prats Salvado, Enric; Monnerie, Nathalie;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::8a183efdbe1c10c1148117160b725326&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::8a183efdbe1c10c1148117160b725326&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Authors: Enric Prats-Salvado; Nathalie Monnerie; Christian Sattler;Abstract Purpose of Review This review aims to summarize the different energy sources that have been proposed to power direct air capture (DAC) of CO2, to assess their maturity and to suggest overlooked concepts. Recent Findings Among the concepts based on renewable energy, the authors found that concentrated solar thermal (CST) technologies have been largely overlooked, even though they are the most cost-effective source of renewable dispatchable heat.
Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40518-025-00255-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40518-025-00255-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United States, GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Fiona Köhnke; Bettina Steuri; Lars Baetcke; Malgorzata Borchers; Torsten Brinkmann; Roland Dittmeyer; Martin Dornheim; Juliane El Zohbi; Johannes Förster; Erik Gawel; Erik Gawel; Knut Görl; Michael Herbst; Dominik Heß; Aram Kalhori; Klaas Korte; Zhan Li; Till Markus; Nadine Mengis; Nathalie Monnerie; Andreas Oschlies; Enric Prats-Salvado; Enric Prats-Salvado; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Romina Schaller; Eva Schill; Eva Schill; Sonja Simon; Angela Stevenson; Terese Thoni; Terese Thoni; Daniela Thrän; Daniela Thrän; Mengzhu Xiao; Daniela Jacob;With the amendment to the German Climate Change Act in 2021, the Federal Government of Germany has set the target to become greenhouse gas neutral by 2045. Reaching this ambitious target requires multisectoral efforts, which in turn calls for interdisciplinary collaboration: the Net-Zero-2050 project of the Helmholtz Climate Initiative serves as an example of successful, interdisciplinary collaboration with the aim of producing valuable recommendations for action to achieve net-zero CO2 emissions in Germany. To this end, we applied an interdisciplinary approach to combining comprehensive research results from ten German national research centers in the context of carbon neutrality in Germany. In this paper, we present our approach and the method behind the interdisciplinary storylines development, which enabled us to create a common framework between different carbon dioxide removal and avoidance methods and the bigger carbon neutrality context. Thus, the research findings are aggregated into narratives: the two complementary storylines focus on technologies for net-zero CO2 emissions and on different framing conditions for implementing net-zero CO2 measures. Moreover, we outline the Net-Zero-2050 results emerging from the two storylines by presenting the resulting narratives in the context of carbon neutrality in Germany. Aiming at creating insights into how complementary and related expertise can be combined in teams across disciplines, we conclude with the project’s lessons learned. This paper sheds light on how to facilitate cooperation between different science disciplines with the purpose of preparing joint research results that can be communicated to a specific audience. Additionally, it provides further evidence that interdisciplinary and diverse research teams are an essential factor for defining solution spaces for complex, interdisciplinary problems.
OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2024.1433491&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2024.1433491&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object GermanyAuthors: Kadohiro, Yasuki; Prats Salvado, Enric; Serafim Martins, Joao Humberto; Dimitrakis, Dimitrios; +9 AuthorsKadohiro, Yasuki; Prats Salvado, Enric; Serafim Martins, Joao Humberto; Dimitrakis, Dimitrios; Thomey, Dennis; Monnerie, Nathalie; Sattler, Christian; Michels, Jonas; Pfeifer, Irina; Kürten, Martin; Lanchi, M.; Liberatore, R.; Turchetti, Luca;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2c619accdc36b3e5ee2daccced76a184&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2c619accdc36b3e5ee2daccced76a184&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 GermanyPublisher:American Chemical Society (ACS) Authors: Prats Salvado, Enric; JAGTAP, NIPUN; Monnerie, Nathalie; Sattler, Christian;Direct air capture (DAC) of CO2 has gained attention as a sustainable carbon source. One of the most promising technologies currently available is liquid solvent DAC (L-DAC), but the significant fraction of fossil CO2 in the output stream hinders its utilization in carbon-neutral fuels and chemicals. Fossil CO2 is generated and captured during the combustion of fuels to calcine carbonates, which is difficult to decarbonize due to the high temperatures required. Solar thermal energy can provide green high-temperature heat, but it flourishes in arid regions where environmental conditions are typically unfavorable for L-DAC. This study proposes a solar-powered L-DAC approach and develops a model to assess the influence of the location and plant capacity on capture costs. The performed life cycle assessment enables the comparison of technologies based on net CO2 removal, demonstrating that solar-powered L-DAC is not only more environmentally friendly but also more cost-effective than conventional L-DAC.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c08269&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c08269&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Prats Salvado, Enric; Monnerie, Nathalie; Sattler, Christian;doi: 10.3390/en15145017
Non-abatable emissions are one of the decarbonization challenges that could be addressed with carbon-neutral fuels. One promising production pathway is the direct air capture (DAC) of carbon dioxide, followed by a solar thermochemical cycle and liquid fuel synthesis. In this study, we explore different combinations of these technologies to produce methanol from an economic perspective in order to determine the most efficient one. For this purpose, a model is built and simulated in Aspen Plus®, and a solar field is designed and sized with HFLCAL®. The inherent dynamics of solar irradiation were considered with the meteorological data from Meteonorm® at the chosen location (Riyadh, Saudi Arabia). Four different integration strategies are assessed by determining the minimum selling price of methanol for each technology combination. These values were compared against a baseline with no synergies between the DAC and the solar fuels production. The results show that the most economical methanol is produced with a central low-temperature DAC unit that consumes the low-quality waste heat of the downstream process. Additionally, it is determined with a sensitivity analysis that the optimal annual production of methanol is 11.8 kt/y for a solar field with a design thermal output of 280 MW.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5017/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Funded by:EC | SFERA-IIIEC| SFERA-IIIAuthors: Prats-Salvado, Enric; Monnerie, Nathalie; Sattler, Christian;doi: 10.3390/en14164818
Methanol is an example of a valuable chemical that can be produced from water and carbon dioxide through a chemical process that is fully powered by concentrated solar thermal energy and involves three steps: direct air capture (DAC), thermochemical splitting and methanol synthesis. In the present work, we consider the whole value chain from the harvesting of raw materials to the final product. We also identify synergies between the aforementioned steps and collect them in five possible scenarios aimed to reduce the specific energy consumption. To assess the scenarios, we combined data from low and high temperature DAC with an Aspen Plus® model of a plant that includes water and carbon dioxide splitting units via thermochemical cycles (TCC), CO/CO2 separation, storage and methanol synthesis. We paid special attention to the energy required for the generation of low oxygen partial pressures in the reduction step of the TCC, as well as the overall water consumption. Results show that suggested synergies, in particular, co-generation, are effective and can lead to solar-to-fuel efficiencies up to 10.2% (compared to the 8.8% baseline). In addition, we appoint vacuum as the most adequate strategy for obtaining low oxygen partial pressures.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4818/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164818&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4818/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164818&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 GermanyAuthors: Prats Salvado, Enric; Monnerie, Nathalie;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::8a183efdbe1c10c1148117160b725326&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::8a183efdbe1c10c1148117160b725326&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Authors: Enric Prats-Salvado; Nathalie Monnerie; Christian Sattler;Abstract Purpose of Review This review aims to summarize the different energy sources that have been proposed to power direct air capture (DAC) of CO2, to assess their maturity and to suggest overlooked concepts. Recent Findings Among the concepts based on renewable energy, the authors found that concentrated solar thermal (CST) technologies have been largely overlooked, even though they are the most cost-effective source of renewable dispatchable heat.
Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40518-025-00255-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40518-025-00255-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
