Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
8 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jong Won Choi; Young-Chan Choi; Joeng-Geun Kim; Hueon Namkung; +4 Authors

    Abstract The co-combustion of sewage sludge and woody biomass is a key issue in coal power plants. Different combustion and ash behaviors of sewage sludge and woody biomass cause unpredictable operating concerns. In this study, the combustion and ash agglomeration behavior of blended fuel of sewage sludge and woody biomass (BSW) were investigated while coal co-combusted with it. Thermogravimetric analysis (TGA) revealed that adding a high amount of BSW into the coal lowered volatilization, ignition, and burn-out temperature. The char combustion reactivity of coal differed from that of BSW. The shrinking core model (SCM) and volumetric reaction model (VRM) were used to fit the char combustion reactivity of coal and BSW. In the case of ash agglomeration behavior, BSW addition led to increasing particle agglomeration at fouling temperatures. In particular, phosphorus composition influenced particle growth, which was verified using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX) analysis. Furthermore, the ash mixture ratio of BSW and coal changed the intensity of the phosphorus-bearing mineral phase from X-ray diffraction (XRD) analysis, and finally influenced the melting temperature of the ash.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jong Won Choi; Se-Joon Park; Joeng-Geun Kim; Young Joo Lee; +6 Authors

    Abstract The main concerns of coal power plants are related to high thermal efficiency and biomass utilization for the reduction of CO2 emissions. In this work, the fuel characteristics of a hybrid coal (HCK) impregnated by sugar impurities extracted from a lignocellulosic biomass were investigated. First, an optimized extraction condition for the sugar impurities was chosen among the various reaction temperatures and times using a hydrothermal pre-treatment (HTP) reactor. The extracted sugar impurities were consisted of 21.76 wt% glucan, 75.88 wt% XMG (xylan + mannan + galactan) and 2.36 wt% arabinan at the optimized reaction condition (190 °C and 30 min). 5 wt% sugar impurities based on the coal weight (dry basis) was used to prepare the HCK and the fuel characteristics were compared. According to the H/C and O/C ratios, raw coals were upgraded. In addition, the calorific value of the raw coals was enhanced by HCK production process. The HCKs had a low moisture re-adsorption rate in an excessive water immersion condition compared to the raw coals. To clarify the combustion behavior of the HCKs, thermogravimetric analysis (TGA) was carried out. The HCKs had a single-stage combustion pattern on the differential thermogravimetric (DTG) curve, even though they were composed of a coal and biomass resource. During the kinetic study of the raw coals and HCKs, a high reaction rate constant (k) and low activation energy (Ea) for the HCKs were identified compared to that of the raw coals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Min Ho Jin; Min Ho Jin; Young Joo Lee; Dong-Wook Lee; +7 Authors

    Abstract To improve cold gas efficiency of entrained-flow gasification, coal water slurry (CWS) as a fuel must have high heating value at low viscosity. Especially, considering unstable supply of bituminous coal, the preparation of CWS with high coal content from low-rank coal remains a challenging topic. In this study, we report a remarkable improvement in coal content of CWS at low viscosity (1000 cP) through torrefaction of low-rank coal. Compared to dried coal (moisture-free coal), the torrefaction of low-rank coal leads to an improvement in hydrophobic nature of coal surface and a decrease in coal porosity. The moisture readsorption ratio of the torrefied low-rank coal significantly decreases due to its high hydrophobic nature and low porosity. As a result, Kideco coal showed a 6% and 58.7% increase in the coal content and heating value of CWS after torrefaction at 300 °C in comparison to those of CWS made with dried coal. Ultimately, the torrefied coal-based CWS with enhanced coal content and heating value at low viscosity is expected to contribute to an increase in the efficiency of a gasifier and IGCC process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ju-Hyoung Park; Min-Ho Jin; Dong-Wook Lee; Young-Joo Lee; +5 Authors

    Hydrogen production from renewable resources, such as lignocellulosic biomass, is highly desired, under the most sustainable and mildest reaction conditions. In this study, a new sustainable three-step process for the production of hydrogen has been proposed. In the first step, a crude formic acid (CF) solution, which included typical reaction byproducts, in particular, acetic acid, levulinic acid, saccharides, 5-hydroxymethylfurfural, furfural, and lignin, was obtained through the combined hydrolysis/oxidation of the biomass, in the presence of diluted sulfuric acid/hydrogen peroxide, as homogeneous catalysts. In the second one, the distilled formic acid (DF) solution was obtained by distillation of the CF solution, for example, by isolating liquid byproducts, or the lignin-free CF (LCF) solution was recovered by CF filtration for the elimination of only solid lignin particles. In the final step, hydrogen was produced from the DF or LCF solutions through formic acid dehydrogenation over Pd supported on amine-functionalized mesoporous silica catalysts, in the presence of sodium formate, as an additive. The clean hydrogen, which is produced from biomass passing through formic acid, could be applied as an energy source of fuel cells. This new hydrogen production process is smart, allowing the hydrogen production with mild reaction conditions, eventually starting from different lignocellulosic feedstocks, and it could be integrated within the existing hydrothermal technology for levulinic acid production, which has been already recognized as efficient and sustainable. In addition to the production of hydrogen as an energy source of fuel cells, formic acid derived from biomass could be utilized as a platform chemical for chemical, agricultural, textile, leather, pharmaceutical, and rubber industries.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2019 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2019 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dong-Wook Lee; Young-Chan Choi; Se-Joon Park; Young Joo Lee; +5 Authors

    Abstract In this study, the evaporation temperature behaviors of various liquids in silica and activated carbon pores were investigated, and applicability of bioliquid in coal pores was reported. In countries around the world, to reduce the potential carbon dioxide, solid phase biomasses, such as wood chips and pellets, have been mixed with coal to make fuel for coal-fired power plants. However, the liquid phase biomass (bioliquid) has a phase different from coal in atmospheric conditions and evaporates at a relatively low temperature. As a result, it has been difficult to use biomass in the existing coal-fired power plants due to a number of problems, such as fuel injection, the reduction of combustion efficiency in coal, spontaneous combustion, and the risk of explosion during drying. To address these challenges, evaporation behaviors of bioliquids were evaluated using silica and activated carbon that have various pores and surface characteristics. The impregnation of bioliquids was accelerated on a support that had the same hydrophilic or hydrophobic characteristics, and the evaporation temperature increased at the hydrophilic surfaces or in small pores. In addition, evaporation behaviors were assessed by filling bioliquids into coal pores that originated from ash and fixed carbon. These results increase understanding of coal pore characteristics and will enable better choices of bioliquids that can be used together with coal in the existing coal-fired power plants.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Young Chan Choi; Hueon Namkung; Kwang Ho Song; Jong Won Choi; +8 Authors

    Abstract The application of biomass resources and sewage sludge is currently the most important issue in the field of coal combustion systems. The main drawback for operating a boiler system is its varied firing characteristics and low heating value. In this study, we have developed new synthetic fuels, namely hybrid sludge fuel (HSF), using coal and sewage sludge impregnated bioliquid (molasses) and evaluated their properties by comparison with conventional fuels. To prepare the HSF, it was treated in a carbonization system at 250 °C. Depending on the van Krevelen diagram, the fuel quality of HSF was superior to that of raw bioliquid and sewage sludge. In addition, its fuel characteristic was similar to sub-bituminous and bituminous coal. Thermogravimetric analysis (TGA) indicated only a single-stage combustion pattern for HSF during non-isothermal heating. To clarify the unburned carbon (UBC) content, an ultimate analysis was conducted. The amount of UBC of the HSF was much more than that of sewage sludge, but less than that of coal. To investigate the surface hydrophobicity of HSF, Fourier transform infrared spectroscopy (FT-IR) analysis and a moisture re-adsorption test were carried out. The HSF possessed high hydrophobicity and presented a low moisture re-adsorption rate compared to conventional fuels.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel Processing Technology
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel Processing Technology
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hueon Namkung; Young-Joo Lee; Ju-Hyoung Park; Gyu-Seob Song; +6 Authors

    Abstract Partially melted ash particles cause increased ash fouling, agglomeration and sintering behaviors during biomass combustion. In addition, ash fouling facilitates the corrosion behavior of stainless steel. In this work, the agglomeration/sintering and corrosion behaviors of untreated herbaceous biomass ash and that pre-treated by an alkali metal leaching reaction were investigated under combustion conditions. Although the ash agglomeration tendency increased with increasing temperature, the tendency was reduced by alkali metal leaching pre-treatment. During comparison of sintering behavior, the degree of sintering (x/r) increased as a function of time but was substantially alleviated by alkali metal leaching pre-treatment. In comparison to the typical Frenkel sintering model, a modified Frenkel sintering model was shown to fit well with the experimental sintering behavior. Alkali metal leaching pre-treatment inhibited ash particle adhesion and made high melting temperature minerals, which was verified by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) analysis, the use of ternary mineral phase diagrams and adoption of a new chemical classification system. Furthermore, from SEM-EDX, alkali metal leaching pre-treatment was seen to reduce the corrosion by ash fouling on stainless steel (SUS) 316. Resultingly, the alkali metal leaching pre-treatment significantly alleviated the ash adhesion and corrosion behaviors.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kwang Ho Song; Min Ho Jin; Young Chan Choi; Jong Won Choi; +6 Authors

    Developing effective, economical, and environmentally sound approaches for sewage sludge management remains an important global issue. In this paper, we propose a bioethanol-lignin (nonfood biomass)-based sewage sludge upgrading process for enhancing the heating value and reducing air pollutants of hybrid sewage sludge fuel (HSF) for the effective management of sewage sludge. Sewage sludge paste with the lignin-CaO solution implies drying at 105 °C accompanied by torrefaction at 250 °C. During torrefaction, moisture and partly volatile matter begin to evaporate, and are almost vaporized out to the surface. In this study, the proposed process enhances the net caloric value (NCV) to 37%. The lignin-embedded HSF shows a two-in-one combustion peak regardless of the mixing ratio, resulting in a 70% reduction of unburned carbon (UBC) emissions, which is one of the particular matter (PM) sources of combustion flue gas. Other air pollutants, such as CO, hydrocarbon, NOx, and SOx, were also reduced by the proposed process. In particular, SOx emission remained at ~1 ppm (average value) regardless of the sulfur content of the fuel.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2019 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2019
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2019 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2019
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
8 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jong Won Choi; Young-Chan Choi; Joeng-Geun Kim; Hueon Namkung; +4 Authors

    Abstract The co-combustion of sewage sludge and woody biomass is a key issue in coal power plants. Different combustion and ash behaviors of sewage sludge and woody biomass cause unpredictable operating concerns. In this study, the combustion and ash agglomeration behavior of blended fuel of sewage sludge and woody biomass (BSW) were investigated while coal co-combusted with it. Thermogravimetric analysis (TGA) revealed that adding a high amount of BSW into the coal lowered volatilization, ignition, and burn-out temperature. The char combustion reactivity of coal differed from that of BSW. The shrinking core model (SCM) and volumetric reaction model (VRM) were used to fit the char combustion reactivity of coal and BSW. In the case of ash agglomeration behavior, BSW addition led to increasing particle agglomeration at fouling temperatures. In particular, phosphorus composition influenced particle growth, which was verified using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX) analysis. Furthermore, the ash mixture ratio of BSW and coal changed the intensity of the phosphorus-bearing mineral phase from X-ray diffraction (XRD) analysis, and finally influenced the melting temperature of the ash.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jong Won Choi; Se-Joon Park; Joeng-Geun Kim; Young Joo Lee; +6 Authors

    Abstract The main concerns of coal power plants are related to high thermal efficiency and biomass utilization for the reduction of CO2 emissions. In this work, the fuel characteristics of a hybrid coal (HCK) impregnated by sugar impurities extracted from a lignocellulosic biomass were investigated. First, an optimized extraction condition for the sugar impurities was chosen among the various reaction temperatures and times using a hydrothermal pre-treatment (HTP) reactor. The extracted sugar impurities were consisted of 21.76 wt% glucan, 75.88 wt% XMG (xylan + mannan + galactan) and 2.36 wt% arabinan at the optimized reaction condition (190 °C and 30 min). 5 wt% sugar impurities based on the coal weight (dry basis) was used to prepare the HCK and the fuel characteristics were compared. According to the H/C and O/C ratios, raw coals were upgraded. In addition, the calorific value of the raw coals was enhanced by HCK production process. The HCKs had a low moisture re-adsorption rate in an excessive water immersion condition compared to the raw coals. To clarify the combustion behavior of the HCKs, thermogravimetric analysis (TGA) was carried out. The HCKs had a single-stage combustion pattern on the differential thermogravimetric (DTG) curve, even though they were composed of a coal and biomass resource. During the kinetic study of the raw coals and HCKs, a high reaction rate constant (k) and low activation energy (Ea) for the HCKs were identified compared to that of the raw coals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Min Ho Jin; Min Ho Jin; Young Joo Lee; Dong-Wook Lee; +7 Authors

    Abstract To improve cold gas efficiency of entrained-flow gasification, coal water slurry (CWS) as a fuel must have high heating value at low viscosity. Especially, considering unstable supply of bituminous coal, the preparation of CWS with high coal content from low-rank coal remains a challenging topic. In this study, we report a remarkable improvement in coal content of CWS at low viscosity (1000 cP) through torrefaction of low-rank coal. Compared to dried coal (moisture-free coal), the torrefaction of low-rank coal leads to an improvement in hydrophobic nature of coal surface and a decrease in coal porosity. The moisture readsorption ratio of the torrefied low-rank coal significantly decreases due to its high hydrophobic nature and low porosity. As a result, Kideco coal showed a 6% and 58.7% increase in the coal content and heating value of CWS after torrefaction at 300 °C in comparison to those of CWS made with dried coal. Ultimately, the torrefied coal-based CWS with enhanced coal content and heating value at low viscosity is expected to contribute to an increase in the efficiency of a gasifier and IGCC process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ju-Hyoung Park; Min-Ho Jin; Dong-Wook Lee; Young-Joo Lee; +5 Authors

    Hydrogen production from renewable resources, such as lignocellulosic biomass, is highly desired, under the most sustainable and mildest reaction conditions. In this study, a new sustainable three-step process for the production of hydrogen has been proposed. In the first step, a crude formic acid (CF) solution, which included typical reaction byproducts, in particular, acetic acid, levulinic acid, saccharides, 5-hydroxymethylfurfural, furfural, and lignin, was obtained through the combined hydrolysis/oxidation of the biomass, in the presence of diluted sulfuric acid/hydrogen peroxide, as homogeneous catalysts. In the second one, the distilled formic acid (DF) solution was obtained by distillation of the CF solution, for example, by isolating liquid byproducts, or the lignin-free CF (LCF) solution was recovered by CF filtration for the elimination of only solid lignin particles. In the final step, hydrogen was produced from the DF or LCF solutions through formic acid dehydrogenation over Pd supported on amine-functionalized mesoporous silica catalysts, in the presence of sodium formate, as an additive. The clean hydrogen, which is produced from biomass passing through formic acid, could be applied as an energy source of fuel cells. This new hydrogen production process is smart, allowing the hydrogen production with mild reaction conditions, eventually starting from different lignocellulosic feedstocks, and it could be integrated within the existing hydrothermal technology for levulinic acid production, which has been already recognized as efficient and sustainable. In addition to the production of hydrogen as an energy source of fuel cells, formic acid derived from biomass could be utilized as a platform chemical for chemical, agricultural, textile, leather, pharmaceutical, and rubber industries.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2019 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2019 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dong-Wook Lee; Young-Chan Choi; Se-Joon Park; Young Joo Lee; +5 Authors

    Abstract In this study, the evaporation temperature behaviors of various liquids in silica and activated carbon pores were investigated, and applicability of bioliquid in coal pores was reported. In countries around the world, to reduce the potential carbon dioxide, solid phase biomasses, such as wood chips and pellets, have been mixed with coal to make fuel for coal-fired power plants. However, the liquid phase biomass (bioliquid) has a phase different from coal in atmospheric conditions and evaporates at a relatively low temperature. As a result, it has been difficult to use biomass in the existing coal-fired power plants due to a number of problems, such as fuel injection, the reduction of combustion efficiency in coal, spontaneous combustion, and the risk of explosion during drying. To address these challenges, evaporation behaviors of bioliquids were evaluated using silica and activated carbon that have various pores and surface characteristics. The impregnation of bioliquids was accelerated on a support that had the same hydrophilic or hydrophobic characteristics, and the evaporation temperature increased at the hydrophilic surfaces or in small pores. In addition, evaporation behaviors were assessed by filling bioliquids into coal pores that originated from ash and fixed carbon. These results increase understanding of coal pore characteristics and will enable better choices of bioliquids that can be used together with coal in the existing coal-fired power plants.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Young Chan Choi; Hueon Namkung; Kwang Ho Song; Jong Won Choi; +8 Authors

    Abstract The application of biomass resources and sewage sludge is currently the most important issue in the field of coal combustion systems. The main drawback for operating a boiler system is its varied firing characteristics and low heating value. In this study, we have developed new synthetic fuels, namely hybrid sludge fuel (HSF), using coal and sewage sludge impregnated bioliquid (molasses) and evaluated their properties by comparison with conventional fuels. To prepare the HSF, it was treated in a carbonization system at 250 °C. Depending on the van Krevelen diagram, the fuel quality of HSF was superior to that of raw bioliquid and sewage sludge. In addition, its fuel characteristic was similar to sub-bituminous and bituminous coal. Thermogravimetric analysis (TGA) indicated only a single-stage combustion pattern for HSF during non-isothermal heating. To clarify the unburned carbon (UBC) content, an ultimate analysis was conducted. The amount of UBC of the HSF was much more than that of sewage sludge, but less than that of coal. To investigate the surface hydrophobicity of HSF, Fourier transform infrared spectroscopy (FT-IR) analysis and a moisture re-adsorption test were carried out. The HSF possessed high hydrophobicity and presented a low moisture re-adsorption rate compared to conventional fuels.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel Processing Technology
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel Processing Technology
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hueon Namkung; Young-Joo Lee; Ju-Hyoung Park; Gyu-Seob Song; +6 Authors

    Abstract Partially melted ash particles cause increased ash fouling, agglomeration and sintering behaviors during biomass combustion. In addition, ash fouling facilitates the corrosion behavior of stainless steel. In this work, the agglomeration/sintering and corrosion behaviors of untreated herbaceous biomass ash and that pre-treated by an alkali metal leaching reaction were investigated under combustion conditions. Although the ash agglomeration tendency increased with increasing temperature, the tendency was reduced by alkali metal leaching pre-treatment. During comparison of sintering behavior, the degree of sintering (x/r) increased as a function of time but was substantially alleviated by alkali metal leaching pre-treatment. In comparison to the typical Frenkel sintering model, a modified Frenkel sintering model was shown to fit well with the experimental sintering behavior. Alkali metal leaching pre-treatment inhibited ash particle adhesion and made high melting temperature minerals, which was verified by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) analysis, the use of ternary mineral phase diagrams and adoption of a new chemical classification system. Furthermore, from SEM-EDX, alkali metal leaching pre-treatment was seen to reduce the corrosion by ash fouling on stainless steel (SUS) 316. Resultingly, the alkali metal leaching pre-treatment significantly alleviated the ash adhesion and corrosion behaviors.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kwang Ho Song; Min Ho Jin; Young Chan Choi; Jong Won Choi; +6 Authors

    Developing effective, economical, and environmentally sound approaches for sewage sludge management remains an important global issue. In this paper, we propose a bioethanol-lignin (nonfood biomass)-based sewage sludge upgrading process for enhancing the heating value and reducing air pollutants of hybrid sewage sludge fuel (HSF) for the effective management of sewage sludge. Sewage sludge paste with the lignin-CaO solution implies drying at 105 °C accompanied by torrefaction at 250 °C. During torrefaction, moisture and partly volatile matter begin to evaporate, and are almost vaporized out to the surface. In this study, the proposed process enhances the net caloric value (NCV) to 37%. The lignin-embedded HSF shows a two-in-one combustion peak regardless of the mixing ratio, resulting in a 70% reduction of unburned carbon (UBC) emissions, which is one of the particular matter (PM) sources of combustion flue gas. Other air pollutants, such as CO, hydrocarbon, NOx, and SOx, were also reduced by the proposed process. In particular, SOx emission remained at ~1 ppm (average value) regardless of the sulfur content of the fuel.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2019 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2019
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2019 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2019
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph