- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Jong Won Choi; Young-Chan Choi; Joeng-Geun Kim; Hueon Namkung; Se-Joon Park; Young Joo Lee; Gyu-Seob Song; Ju-Hyoung Park;Abstract The co-combustion of sewage sludge and woody biomass is a key issue in coal power plants. Different combustion and ash behaviors of sewage sludge and woody biomass cause unpredictable operating concerns. In this study, the combustion and ash agglomeration behavior of blended fuel of sewage sludge and woody biomass (BSW) were investigated while coal co-combusted with it. Thermogravimetric analysis (TGA) revealed that adding a high amount of BSW into the coal lowered volatilization, ignition, and burn-out temperature. The char combustion reactivity of coal differed from that of BSW. The shrinking core model (SCM) and volumetric reaction model (VRM) were used to fit the char combustion reactivity of coal and BSW. In the case of ash agglomeration behavior, BSW addition led to increasing particle agglomeration at fouling temperatures. In particular, phosphorus composition influenced particle growth, which was verified using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX) analysis. Furthermore, the ash mixture ratio of BSW and coal changed the intensity of the phosphorus-bearing mineral phase from X-ray diffraction (XRD) analysis, and finally influenced the melting temperature of the ash.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.03.109&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.03.109&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Jong Won Choi; Se-Joon Park; Joeng-Geun Kim; Young Joo Lee; Young Joo Lee; Young-Chan Choi; Chung-Hwan Jeon; Hueon Namkung; Ju-Hyoung Park; Gyu-Seob Song;Abstract The main concerns of coal power plants are related to high thermal efficiency and biomass utilization for the reduction of CO2 emissions. In this work, the fuel characteristics of a hybrid coal (HCK) impregnated by sugar impurities extracted from a lignocellulosic biomass were investigated. First, an optimized extraction condition for the sugar impurities was chosen among the various reaction temperatures and times using a hydrothermal pre-treatment (HTP) reactor. The extracted sugar impurities were consisted of 21.76 wt% glucan, 75.88 wt% XMG (xylan + mannan + galactan) and 2.36 wt% arabinan at the optimized reaction condition (190 °C and 30 min). 5 wt% sugar impurities based on the coal weight (dry basis) was used to prepare the HCK and the fuel characteristics were compared. According to the H/C and O/C ratios, raw coals were upgraded. In addition, the calorific value of the raw coals was enhanced by HCK production process. The HCKs had a low moisture re-adsorption rate in an excessive water immersion condition compared to the raw coals. To clarify the combustion behavior of the HCKs, thermogravimetric analysis (TGA) was carried out. The HCKs had a single-stage combustion pattern on the differential thermogravimetric (DTG) curve, even though they were composed of a coal and biomass resource. During the kinetic study of the raw coals and HCKs, a high reaction rate constant (k) and low activation energy (Ea) for the HCKs were identified compared to that of the raw coals.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.09.024&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.09.024&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Min Ho Jin; Min Ho Jin; Young Joo Lee; Dong-Wook Lee; Young Chan Choi; Kwang Ho Song; Joeng Geun Kim; Se Joon Park; Ju-Hyoung Park; Ju-Hyoung Park; Jong Soo Bae;Abstract To improve cold gas efficiency of entrained-flow gasification, coal water slurry (CWS) as a fuel must have high heating value at low viscosity. Especially, considering unstable supply of bituminous coal, the preparation of CWS with high coal content from low-rank coal remains a challenging topic. In this study, we report a remarkable improvement in coal content of CWS at low viscosity (1000 cP) through torrefaction of low-rank coal. Compared to dried coal (moisture-free coal), the torrefaction of low-rank coal leads to an improvement in hydrophobic nature of coal surface and a decrease in coal porosity. The moisture readsorption ratio of the torrefied low-rank coal significantly decreases due to its high hydrophobic nature and low porosity. As a result, Kideco coal showed a 6% and 58.7% increase in the coal content and heating value of CWS after torrefaction at 300 °C in comparison to those of CWS made with dried coal. Ultimately, the torrefied coal-based CWS with enhanced coal content and heating value at low viscosity is expected to contribute to an increase in the efficiency of a gasifier and IGCC process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.03.016&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.03.016&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Ju-Hyoung Park; Min-Ho Jin; Dong-Wook Lee; Young-Joo Lee; Gyu-Seob Song; Se-Joon Park; Hueon Namkung; Kwang Ho Song; Young-Chan Choi;pmid: 31602972
Hydrogen production from renewable resources, such as lignocellulosic biomass, is highly desired, under the most sustainable and mildest reaction conditions. In this study, a new sustainable three-step process for the production of hydrogen has been proposed. In the first step, a crude formic acid (CF) solution, which included typical reaction byproducts, in particular, acetic acid, levulinic acid, saccharides, 5-hydroxymethylfurfural, furfural, and lignin, was obtained through the combined hydrolysis/oxidation of the biomass, in the presence of diluted sulfuric acid/hydrogen peroxide, as homogeneous catalysts. In the second one, the distilled formic acid (DF) solution was obtained by distillation of the CF solution, for example, by isolating liquid byproducts, or the lignin-free CF (LCF) solution was recovered by CF filtration for the elimination of only solid lignin particles. In the final step, hydrogen was produced from the DF or LCF solutions through formic acid dehydrogenation over Pd supported on amine-functionalized mesoporous silica catalysts, in the presence of sodium formate, as an additive. The clean hydrogen, which is produced from biomass passing through formic acid, could be applied as an energy source of fuel cells. This new hydrogen production process is smart, allowing the hydrogen production with mild reaction conditions, eventually starting from different lignocellulosic feedstocks, and it could be integrated within the existing hydrothermal technology for levulinic acid production, which has been already recognized as efficient and sustainable. In addition to the production of hydrogen as an energy source of fuel cells, formic acid derived from biomass could be utilized as a platform chemical for chemical, agricultural, textile, leather, pharmaceutical, and rubber industries.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b04273&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b04273&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Dong-Wook Lee; Young-Chan Choi; Se-Joon Park; Young Joo Lee; Choon Han; Jong-Soo Bae; Joeng-Geun Kim; Ju-Hyoung Park; Ju-Hyoung Park;Abstract In this study, the evaporation temperature behaviors of various liquids in silica and activated carbon pores were investigated, and applicability of bioliquid in coal pores was reported. In countries around the world, to reduce the potential carbon dioxide, solid phase biomasses, such as wood chips and pellets, have been mixed with coal to make fuel for coal-fired power plants. However, the liquid phase biomass (bioliquid) has a phase different from coal in atmospheric conditions and evaporates at a relatively low temperature. As a result, it has been difficult to use biomass in the existing coal-fired power plants due to a number of problems, such as fuel injection, the reduction of combustion efficiency in coal, spontaneous combustion, and the risk of explosion during drying. To address these challenges, evaporation behaviors of bioliquids were evaluated using silica and activated carbon that have various pores and surface characteristics. The impregnation of bioliquids was accelerated on a support that had the same hydrophilic or hydrophobic characteristics, and the evaporation temperature increased at the hydrophilic surfaces or in small pores. In addition, evaporation behaviors were assessed by filling bioliquids into coal pores that originated from ash and fixed carbon. These results increase understanding of coal pore characteristics and will enable better choices of bioliquids that can be used together with coal in the existing coal-fired power plants.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2015.03.025&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2015.03.025&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Young Chan Choi; Hueon Namkung; Kwang Ho Song; Jong Won Choi; Byung Hwan Um; Young Joo Lee; Gyu Seob Song; Joeng Geun Kim; Se Joon Park; Jun Su Park; Ju-Hyoung Park; Ju-Hyoung Park;Abstract The application of biomass resources and sewage sludge is currently the most important issue in the field of coal combustion systems. The main drawback for operating a boiler system is its varied firing characteristics and low heating value. In this study, we have developed new synthetic fuels, namely hybrid sludge fuel (HSF), using coal and sewage sludge impregnated bioliquid (molasses) and evaluated their properties by comparison with conventional fuels. To prepare the HSF, it was treated in a carbonization system at 250 °C. Depending on the van Krevelen diagram, the fuel quality of HSF was superior to that of raw bioliquid and sewage sludge. In addition, its fuel characteristic was similar to sub-bituminous and bituminous coal. Thermogravimetric analysis (TGA) indicated only a single-stage combustion pattern for HSF during non-isothermal heating. To clarify the unburned carbon (UBC) content, an ultimate analysis was conducted. The amount of UBC of the HSF was much more than that of sewage sludge, but less than that of coal. To investigate the surface hydrophobicity of HSF, Fourier transform infrared spectroscopy (FT-IR) analysis and a moisture re-adsorption test were carried out. The HSF possessed high hydrophobicity and presented a low moisture re-adsorption rate compared to conventional fuels.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.06.030&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.06.030&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Hueon Namkung; Young-Joo Lee; Ju-Hyoung Park; Gyu-Seob Song; Jong Won Choi; Joeng-Geun Kim; Se-Joon Park; Joo Chang Park; Hyung-Taek Kim; Young-Chan Choi;Abstract Partially melted ash particles cause increased ash fouling, agglomeration and sintering behaviors during biomass combustion. In addition, ash fouling facilitates the corrosion behavior of stainless steel. In this work, the agglomeration/sintering and corrosion behaviors of untreated herbaceous biomass ash and that pre-treated by an alkali metal leaching reaction were investigated under combustion conditions. Although the ash agglomeration tendency increased with increasing temperature, the tendency was reduced by alkali metal leaching pre-treatment. During comparison of sintering behavior, the degree of sintering (x/r) increased as a function of time but was substantially alleviated by alkali metal leaching pre-treatment. In comparison to the typical Frenkel sintering model, a modified Frenkel sintering model was shown to fit well with the experimental sintering behavior. Alkali metal leaching pre-treatment inhibited ash particle adhesion and made high melting temperature minerals, which was verified by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) analysis, the use of ternary mineral phase diagrams and adoption of a new chemical classification system. Furthermore, from SEM-EDX, alkali metal leaching pre-treatment was seen to reduce the corrosion by ash fouling on stainless steel (SUS) 316. Resultingly, the alkali metal leaching pre-treatment significantly alleviated the ash adhesion and corrosion behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115950&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115950&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Kwang Ho Song; Min Ho Jin; Young Chan Choi; Jong Won Choi; Gyu Seob Song; Joeng Geun Kim; Se Joon Park; Young-Joo Lee; Dongwook Lee; Ju-Hyoung Park;doi: 10.3390/en12163072
Developing effective, economical, and environmentally sound approaches for sewage sludge management remains an important global issue. In this paper, we propose a bioethanol-lignin (nonfood biomass)-based sewage sludge upgrading process for enhancing the heating value and reducing air pollutants of hybrid sewage sludge fuel (HSF) for the effective management of sewage sludge. Sewage sludge paste with the lignin-CaO solution implies drying at 105 °C accompanied by torrefaction at 250 °C. During torrefaction, moisture and partly volatile matter begin to evaporate, and are almost vaporized out to the surface. In this study, the proposed process enhances the net caloric value (NCV) to 37%. The lignin-embedded HSF shows a two-in-one combustion peak regardless of the mixing ratio, resulting in a 70% reduction of unburned carbon (UBC) emissions, which is one of the particular matter (PM) sources of combustion flue gas. Other air pollutants, such as CO, hydrocarbon, NOx, and SOx, were also reduced by the proposed process. In particular, SOx emission remained at ~1 ppm (average value) regardless of the sulfur content of the fuel.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/16/3072/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12163072&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/16/3072/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12163072&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Jong Won Choi; Young-Chan Choi; Joeng-Geun Kim; Hueon Namkung; Se-Joon Park; Young Joo Lee; Gyu-Seob Song; Ju-Hyoung Park;Abstract The co-combustion of sewage sludge and woody biomass is a key issue in coal power plants. Different combustion and ash behaviors of sewage sludge and woody biomass cause unpredictable operating concerns. In this study, the combustion and ash agglomeration behavior of blended fuel of sewage sludge and woody biomass (BSW) were investigated while coal co-combusted with it. Thermogravimetric analysis (TGA) revealed that adding a high amount of BSW into the coal lowered volatilization, ignition, and burn-out temperature. The char combustion reactivity of coal differed from that of BSW. The shrinking core model (SCM) and volumetric reaction model (VRM) were used to fit the char combustion reactivity of coal and BSW. In the case of ash agglomeration behavior, BSW addition led to increasing particle agglomeration at fouling temperatures. In particular, phosphorus composition influenced particle growth, which was verified using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX) analysis. Furthermore, the ash mixture ratio of BSW and coal changed the intensity of the phosphorus-bearing mineral phase from X-ray diffraction (XRD) analysis, and finally influenced the melting temperature of the ash.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.03.109&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.03.109&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Jong Won Choi; Se-Joon Park; Joeng-Geun Kim; Young Joo Lee; Young Joo Lee; Young-Chan Choi; Chung-Hwan Jeon; Hueon Namkung; Ju-Hyoung Park; Gyu-Seob Song;Abstract The main concerns of coal power plants are related to high thermal efficiency and biomass utilization for the reduction of CO2 emissions. In this work, the fuel characteristics of a hybrid coal (HCK) impregnated by sugar impurities extracted from a lignocellulosic biomass were investigated. First, an optimized extraction condition for the sugar impurities was chosen among the various reaction temperatures and times using a hydrothermal pre-treatment (HTP) reactor. The extracted sugar impurities were consisted of 21.76 wt% glucan, 75.88 wt% XMG (xylan + mannan + galactan) and 2.36 wt% arabinan at the optimized reaction condition (190 °C and 30 min). 5 wt% sugar impurities based on the coal weight (dry basis) was used to prepare the HCK and the fuel characteristics were compared. According to the H/C and O/C ratios, raw coals were upgraded. In addition, the calorific value of the raw coals was enhanced by HCK production process. The HCKs had a low moisture re-adsorption rate in an excessive water immersion condition compared to the raw coals. To clarify the combustion behavior of the HCKs, thermogravimetric analysis (TGA) was carried out. The HCKs had a single-stage combustion pattern on the differential thermogravimetric (DTG) curve, even though they were composed of a coal and biomass resource. During the kinetic study of the raw coals and HCKs, a high reaction rate constant (k) and low activation energy (Ea) for the HCKs were identified compared to that of the raw coals.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.09.024&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.09.024&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Min Ho Jin; Min Ho Jin; Young Joo Lee; Dong-Wook Lee; Young Chan Choi; Kwang Ho Song; Joeng Geun Kim; Se Joon Park; Ju-Hyoung Park; Ju-Hyoung Park; Jong Soo Bae;Abstract To improve cold gas efficiency of entrained-flow gasification, coal water slurry (CWS) as a fuel must have high heating value at low viscosity. Especially, considering unstable supply of bituminous coal, the preparation of CWS with high coal content from low-rank coal remains a challenging topic. In this study, we report a remarkable improvement in coal content of CWS at low viscosity (1000 cP) through torrefaction of low-rank coal. Compared to dried coal (moisture-free coal), the torrefaction of low-rank coal leads to an improvement in hydrophobic nature of coal surface and a decrease in coal porosity. The moisture readsorption ratio of the torrefied low-rank coal significantly decreases due to its high hydrophobic nature and low porosity. As a result, Kideco coal showed a 6% and 58.7% increase in the coal content and heating value of CWS after torrefaction at 300 °C in comparison to those of CWS made with dried coal. Ultimately, the torrefied coal-based CWS with enhanced coal content and heating value at low viscosity is expected to contribute to an increase in the efficiency of a gasifier and IGCC process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.03.016&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.03.016&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Ju-Hyoung Park; Min-Ho Jin; Dong-Wook Lee; Young-Joo Lee; Gyu-Seob Song; Se-Joon Park; Hueon Namkung; Kwang Ho Song; Young-Chan Choi;pmid: 31602972
Hydrogen production from renewable resources, such as lignocellulosic biomass, is highly desired, under the most sustainable and mildest reaction conditions. In this study, a new sustainable three-step process for the production of hydrogen has been proposed. In the first step, a crude formic acid (CF) solution, which included typical reaction byproducts, in particular, acetic acid, levulinic acid, saccharides, 5-hydroxymethylfurfural, furfural, and lignin, was obtained through the combined hydrolysis/oxidation of the biomass, in the presence of diluted sulfuric acid/hydrogen peroxide, as homogeneous catalysts. In the second one, the distilled formic acid (DF) solution was obtained by distillation of the CF solution, for example, by isolating liquid byproducts, or the lignin-free CF (LCF) solution was recovered by CF filtration for the elimination of only solid lignin particles. In the final step, hydrogen was produced from the DF or LCF solutions through formic acid dehydrogenation over Pd supported on amine-functionalized mesoporous silica catalysts, in the presence of sodium formate, as an additive. The clean hydrogen, which is produced from biomass passing through formic acid, could be applied as an energy source of fuel cells. This new hydrogen production process is smart, allowing the hydrogen production with mild reaction conditions, eventually starting from different lignocellulosic feedstocks, and it could be integrated within the existing hydrothermal technology for levulinic acid production, which has been already recognized as efficient and sustainable. In addition to the production of hydrogen as an energy source of fuel cells, formic acid derived from biomass could be utilized as a platform chemical for chemical, agricultural, textile, leather, pharmaceutical, and rubber industries.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b04273&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b04273&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Dong-Wook Lee; Young-Chan Choi; Se-Joon Park; Young Joo Lee; Choon Han; Jong-Soo Bae; Joeng-Geun Kim; Ju-Hyoung Park; Ju-Hyoung Park;Abstract In this study, the evaporation temperature behaviors of various liquids in silica and activated carbon pores were investigated, and applicability of bioliquid in coal pores was reported. In countries around the world, to reduce the potential carbon dioxide, solid phase biomasses, such as wood chips and pellets, have been mixed with coal to make fuel for coal-fired power plants. However, the liquid phase biomass (bioliquid) has a phase different from coal in atmospheric conditions and evaporates at a relatively low temperature. As a result, it has been difficult to use biomass in the existing coal-fired power plants due to a number of problems, such as fuel injection, the reduction of combustion efficiency in coal, spontaneous combustion, and the risk of explosion during drying. To address these challenges, evaporation behaviors of bioliquids were evaluated using silica and activated carbon that have various pores and surface characteristics. The impregnation of bioliquids was accelerated on a support that had the same hydrophilic or hydrophobic characteristics, and the evaporation temperature increased at the hydrophilic surfaces or in small pores. In addition, evaporation behaviors were assessed by filling bioliquids into coal pores that originated from ash and fixed carbon. These results increase understanding of coal pore characteristics and will enable better choices of bioliquids that can be used together with coal in the existing coal-fired power plants.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2015.03.025&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2015.03.025&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Young Chan Choi; Hueon Namkung; Kwang Ho Song; Jong Won Choi; Byung Hwan Um; Young Joo Lee; Gyu Seob Song; Joeng Geun Kim; Se Joon Park; Jun Su Park; Ju-Hyoung Park; Ju-Hyoung Park;Abstract The application of biomass resources and sewage sludge is currently the most important issue in the field of coal combustion systems. The main drawback for operating a boiler system is its varied firing characteristics and low heating value. In this study, we have developed new synthetic fuels, namely hybrid sludge fuel (HSF), using coal and sewage sludge impregnated bioliquid (molasses) and evaluated their properties by comparison with conventional fuels. To prepare the HSF, it was treated in a carbonization system at 250 °C. Depending on the van Krevelen diagram, the fuel quality of HSF was superior to that of raw bioliquid and sewage sludge. In addition, its fuel characteristic was similar to sub-bituminous and bituminous coal. Thermogravimetric analysis (TGA) indicated only a single-stage combustion pattern for HSF during non-isothermal heating. To clarify the unburned carbon (UBC) content, an ultimate analysis was conducted. The amount of UBC of the HSF was much more than that of sewage sludge, but less than that of coal. To investigate the surface hydrophobicity of HSF, Fourier transform infrared spectroscopy (FT-IR) analysis and a moisture re-adsorption test were carried out. The HSF possessed high hydrophobicity and presented a low moisture re-adsorption rate compared to conventional fuels.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.06.030&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.06.030&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Hueon Namkung; Young-Joo Lee; Ju-Hyoung Park; Gyu-Seob Song; Jong Won Choi; Joeng-Geun Kim; Se-Joon Park; Joo Chang Park; Hyung-Taek Kim; Young-Chan Choi;Abstract Partially melted ash particles cause increased ash fouling, agglomeration and sintering behaviors during biomass combustion. In addition, ash fouling facilitates the corrosion behavior of stainless steel. In this work, the agglomeration/sintering and corrosion behaviors of untreated herbaceous biomass ash and that pre-treated by an alkali metal leaching reaction were investigated under combustion conditions. Although the ash agglomeration tendency increased with increasing temperature, the tendency was reduced by alkali metal leaching pre-treatment. During comparison of sintering behavior, the degree of sintering (x/r) increased as a function of time but was substantially alleviated by alkali metal leaching pre-treatment. In comparison to the typical Frenkel sintering model, a modified Frenkel sintering model was shown to fit well with the experimental sintering behavior. Alkali metal leaching pre-treatment inhibited ash particle adhesion and made high melting temperature minerals, which was verified by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) analysis, the use of ternary mineral phase diagrams and adoption of a new chemical classification system. Furthermore, from SEM-EDX, alkali metal leaching pre-treatment was seen to reduce the corrosion by ash fouling on stainless steel (SUS) 316. Resultingly, the alkali metal leaching pre-treatment significantly alleviated the ash adhesion and corrosion behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115950&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.115950&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Kwang Ho Song; Min Ho Jin; Young Chan Choi; Jong Won Choi; Gyu Seob Song; Joeng Geun Kim; Se Joon Park; Young-Joo Lee; Dongwook Lee; Ju-Hyoung Park;doi: 10.3390/en12163072
Developing effective, economical, and environmentally sound approaches for sewage sludge management remains an important global issue. In this paper, we propose a bioethanol-lignin (nonfood biomass)-based sewage sludge upgrading process for enhancing the heating value and reducing air pollutants of hybrid sewage sludge fuel (HSF) for the effective management of sewage sludge. Sewage sludge paste with the lignin-CaO solution implies drying at 105 °C accompanied by torrefaction at 250 °C. During torrefaction, moisture and partly volatile matter begin to evaporate, and are almost vaporized out to the surface. In this study, the proposed process enhances the net caloric value (NCV) to 37%. The lignin-embedded HSF shows a two-in-one combustion peak regardless of the mixing ratio, resulting in a 70% reduction of unburned carbon (UBC) emissions, which is one of the particular matter (PM) sources of combustion flue gas. Other air pollutants, such as CO, hydrocarbon, NOx, and SOx, were also reduced by the proposed process. In particular, SOx emission remained at ~1 ppm (average value) regardless of the sulfur content of the fuel.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/16/3072/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12163072&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/16/3072/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12163072&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
