- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Xian Yi Tan; Jinfeng Dong; Jiawei Liu; Danwei Zhang; Samantha Faye Duran Solco; Kıvanç Sağlık; Ning Jia; Ivan Joel Wen Jie You; Sheau Wei Chien; Xizu Wang; Lei Hu; Yubo Luo; Yun Zheng; Debbie Xiang Yun Soo; Rong Ji; Ken Choon Hwa Goh; Yilin Jiang; Jing‐Feng Li; Ady Suwardi; Qiang Zhu; Jianwei Xu; Qingyu Yan;AbstractThermoelectric materials are highly promising for waste heat harvesting. Although thermoelectric materials research has expanded over the years, bismuth telluride‐based alloys are still the best for near‐room‐temperature applications. In this work, a ≈38% enhancement of the average ZT (300−473 K) to 1.21 is achieved by mixing Bi0.4Sb1.6Te3 with an emerging thermoelectric material Sb2Si2Te6, which is significantly higher than that of most BiySb2−yTe3‐based composites. This enhancement is facilitated by the unique interface region between the Bi0.4Sb1.6Te3 matrix and Sb2Si2Te6‐based precipitates with an orderly atomic arrangement, which promotes the transport of charge carriers with minimal scattering, overcoming a common factor that is limiting ZT enhancement in such composites. At the same time, high‐density dislocations in the same region can effectively scatter the phonons, decoupling the electron‐phonon transport. This results in a ≈56% enhancement of the thermoelectric quality factor at 373 K, from 0.41 for the pristine sample to 0.64 for the composite sample. A single‐leg device is fabricated with a high efficiency of 5.4% at ΔT = 164 K further demonstrating the efficacy of the Sb2Si2Te6 compositing strategy and the importance of the precipitate‐matrix interface microstructure in improving the performance of materials for relatively low‐temperature applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Royal Society of Chemistry (RSC) Yun Zheng; Yun Zheng; Zhong-Zhen Luo; Zhong-Zhen Luo; Yubo Luo; Yubo Luo; Lei Hu; Jianwei Xu; Tyler J. Slade; Qingyu Yan; Mercouri G. Kanatzidis; Xian Yi Tan;The recent advances and new insights resulting thereof in applying defect engineering to improving the thermoelectric performance and mechanical properties of inorganic materials are reviewed.
Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 250 citations 250 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Purna C. Ghimire; Arjun Bhattarai; Rüdiger Schweiss; Günther G. Scherer; Nyunt Wai; Tuti M. Lim; Qingyu Yan;Segmented cells enable real time visualization of the flow distribution in vanadium redox flow batteries by local current or voltage mapping. The lateral flow of current within thick porous electrodes, however, impairs the local resolution of the detected signals. In this study, the open circuit voltage immediately after the cessation of charge/discharge is used for the mapping of reactant conversion. This quantity is not hampered by lateral flow of current and can be conveniently transformed to the corresponding state of charge. The difference between theoretically calculated and experimentally determined conversion (change in the state of charge) across the electrode is used to determine local variations in conversion efficiency. The method is validated by systematic experiments using electrodes with different modifications, varying current densities and flow configurations. The procedure and the interpretation are simple and scalable to any size of flow cell.
Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/1/2/pdfData sources: Multidisciplinary Digital Publishing InstituteDigital Repository of NTUArticle . 2019License: © 2019 by the Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Data sources: Digital Repository of NTUadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/1/2/pdfData sources: Multidisciplinary Digital Publishing InstituteDigital Repository of NTUArticle . 2019License: © 2019 by the Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Data sources: Digital Repository of NTUadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Ghimire, Purna C.; Bhattarai, Arjun; Schweiss, Rüdiger; Scherer, Günther G.; Wai, Nyunt; Yan, Qingyu;Abstract Graphite felts are the most commonly used electrode materials in vanadium redox flow batteries. In the conventional cell design, flat sheets of graphite bipolar plates and porous graphite felts are stacked without any bonding, which requires a certain degree of compression to minimize the contact resistance. Excessive compression of the electrode, however, leads to non-uniform flow distribution and potential occurrence of zones with the retarded flow of electrolyte. This study investigates a wide range of electrode compressions and their effect on the cell performance. The results show that a compression of 25% is the optimal trade-off between contact resistance, homogeneity of flow distribution and pumping losses. Moreover, spatially resolved measurements using a segmented cell are employed to visualize the flow distribution across the electrode in real time. The open circuit voltage after the termination of the cell charge/discharge is converted to the corresponding state of charge (SOC) of the electrolyte, and the difference between the theoretical and experimental state of charge of electrolyte is used to quantify the flow distribution across the electrode. The results show that the optimum conversion of the reactant can be achieved during a single pass at 25% electrode compression. This method of segmentation is simple and scalable to any size of the battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Royal Society of Chemistry (RSC) Qingyu Yan; Songting Cai; Xiaomi Zhang; Chris Wolverton; Shiqiang Hao; Runchu Ma; Xia Hua; Vinayak P. Dravid; Zhong-Zhen Luo; Zhong-Zhen Luo; Mercouri G. Kanatzidis; Gangjian Tan; Ctirad Uher; Trevor P. Bailey;doi: 10.1039/c8ee01755g
The off-centered Ge leads to the ultralow lattice thermal conductivity and record high average ZT for n-type PbSe.
Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Zixuan Chen; Hong-Hua Cui; Shiqiang Hao; Yukun Liu; Hui Liu; Jing Zhou; Yan Yu; Qingyu Yan; Christopher Wolverton; Vinayak P. Dravid; Zhong-Zhen Luo; Zhigang Zou; Mercouri G. Kanatzidis;doi: 10.1039/d3ee00183k
We improve n-type lead chalcogenides by adding GaSb to reduce lattice thermal conductivity and achieve conduction band convergence. This significantly enhances the thermoelectric performance of n-type PbS, making it comparable to its p-type counterpart.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.34 citations 34 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Funded by:UKRI | In Orbit Servicing Contro...UKRI| In Orbit Servicing Control Centre, National FacilityAuthors: Qingyu Yan; Mercouri G. Kanatzidis;pmid: 34675376
Thermoelectric materials can be potentially employed in solid-state devices that harvest waste heat and convert it to electrical power, thereby improving the efficiency of fuel utilization. The spectacular increases in the efficiencies of these materials achieved over the past decade have raised expectations regarding the use of thermoelectric generators in various energy saving and energy management applications, especially at mid to high temperature (400-900 °C). However, several important issues that prevent successful thermoelectric generator commercialization remain unresolved, in good part because of the lack of a research roadmap.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 613 citations 613 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Danwei Zhang; Mingkun Xie; Dorsasadat Safanama; Kivanc Saglik; Xian Yi Tan; Samantha Faye Duran Solco; Jing Cao; Chee Kiang Ivan Tan; Hongfei Liu; Suxi Wang; Qiang Zhu; Wen Hui Derrick Fam; Qingyu Yan; Jing Wu; Ady Suwardi;Decades of studies on thermoelectric materials have enabled the design of high‐performance materials based on basic materials properties, such as bandgap engineering. In general, bandgap energies correspond to the temperature at which the peak thermoelectric performance occurs. For instance, CuGaTe2 with a relatively wide bandgap of 1.2 eV has its peak zT > 1 at > 900 K. On the other hand, the zT is usually very low (<0.1) for this material at room temperature. This severely limits its average zT and hence overall performance. In this study, a phase diagram‐guided Sb alloying strategy to improve the low‐temperature zT of CuGaTe2 is used, by leveraging on the solubility limits to control the formation of the microstructural defects. The addition of Sb simultaneously improves the electrical conductivity and decreases the lattice thermal conductivity. For a low‐temperature range of 300–623 K, this Sb‐alloying strategy enables the achievement of a record high average zT of 0.33. The strategy developed in this study targets the improvement of the low‐temperature range of CuGaTe2, which is rarely focused on for wide‐bandgap ABX2 compounds, opening up more opportunities for holistic performance improvements, potentially enabling ultrahigh‐performance thermoelectrics over a wide temperature range.
Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Xiang Yun Debbie Soo; Joseph Kinyanjui Muiruri; Wen‐Ya Wu; Jayven Chee Chuan Yeo; +11 AuthorsXiang Yun Debbie Soo; Joseph Kinyanjui Muiruri; Wen‐Ya Wu; Jayven Chee Chuan Yeo; Suxi Wang; Nikodem Tomczak; Warintorn Thitsartarn; Beng Hoon Tan; Pei Wang; Fengxia Wei; Ady Suwardi; Jianwei Xu; Xian Jun Loh; Qingyu Yan; Qiang Zhu;pmid: 38594967
AbstractPolyethylene (PE), a highly prevalent non‐biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio‐based PE (bio‐PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio‐PE, including fermentation, gasification, and catalytic conversion of biomass. Interestingly, the bio‐PE production volumes and market are expanding due to the growing environmental concerns and regulatory pressures. Additionally, the production of PE and bio‐PE biocomposites using agricultural waste as filler materials, highlights the growing demand for sustainable alternatives to conventional plastics. According to previous studies, addition of ≈50% defibrillated corn and abaca fibers into bio‐PE matrix and a compatibilizer, results in the highest Young's modulus of 4.61 and 5.81 GPa, respectively. These biocomposites have potential applications in automotive, building construction, and furniture industries. Moreover, the advancement made in abiotic and biotic degradation of PE and PE biocomposites is elucidated to address their environmental impacts. Finally, the paper concludes with insights into the opportunities, challenges, and future perspectives in the sustainable production and utilization of PE and bio‐PE biocomposites. In summary, production of PE and bio‐PE biocomposites can contribute to a cleaner and sustainable future.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Zhong-Zhen Luo; Songting Cai; Shiqiang Hao; Trevor P. Bailey; Yubo Luo; Wenjun Luo; Yan Yu; Ctirad Uher; Christopher Wolverton; Vinayak P. Dravid; Zhigang Zou; Qingyu Yan; Mercouri G. Kanatzidis;doi: 10.1039/d1ee02986j
The discordant Zn and Ga atoms raise the carrier concentration and soften phonon modes, resulting in superior performance nanostructured n-type PbTe.
Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 151 citations 151 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Xian Yi Tan; Jinfeng Dong; Jiawei Liu; Danwei Zhang; Samantha Faye Duran Solco; Kıvanç Sağlık; Ning Jia; Ivan Joel Wen Jie You; Sheau Wei Chien; Xizu Wang; Lei Hu; Yubo Luo; Yun Zheng; Debbie Xiang Yun Soo; Rong Ji; Ken Choon Hwa Goh; Yilin Jiang; Jing‐Feng Li; Ady Suwardi; Qiang Zhu; Jianwei Xu; Qingyu Yan;AbstractThermoelectric materials are highly promising for waste heat harvesting. Although thermoelectric materials research has expanded over the years, bismuth telluride‐based alloys are still the best for near‐room‐temperature applications. In this work, a ≈38% enhancement of the average ZT (300−473 K) to 1.21 is achieved by mixing Bi0.4Sb1.6Te3 with an emerging thermoelectric material Sb2Si2Te6, which is significantly higher than that of most BiySb2−yTe3‐based composites. This enhancement is facilitated by the unique interface region between the Bi0.4Sb1.6Te3 matrix and Sb2Si2Te6‐based precipitates with an orderly atomic arrangement, which promotes the transport of charge carriers with minimal scattering, overcoming a common factor that is limiting ZT enhancement in such composites. At the same time, high‐density dislocations in the same region can effectively scatter the phonons, decoupling the electron‐phonon transport. This results in a ≈56% enhancement of the thermoelectric quality factor at 373 K, from 0.41 for the pristine sample to 0.64 for the composite sample. A single‐leg device is fabricated with a high efficiency of 5.4% at ΔT = 164 K further demonstrating the efficacy of the Sb2Si2Te6 compositing strategy and the importance of the precipitate‐matrix interface microstructure in improving the performance of materials for relatively low‐temperature applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Royal Society of Chemistry (RSC) Yun Zheng; Yun Zheng; Zhong-Zhen Luo; Zhong-Zhen Luo; Yubo Luo; Yubo Luo; Lei Hu; Jianwei Xu; Tyler J. Slade; Qingyu Yan; Mercouri G. Kanatzidis; Xian Yi Tan;The recent advances and new insights resulting thereof in applying defect engineering to improving the thermoelectric performance and mechanical properties of inorganic materials are reviewed.
Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 250 citations 250 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Purna C. Ghimire; Arjun Bhattarai; Rüdiger Schweiss; Günther G. Scherer; Nyunt Wai; Tuti M. Lim; Qingyu Yan;Segmented cells enable real time visualization of the flow distribution in vanadium redox flow batteries by local current or voltage mapping. The lateral flow of current within thick porous electrodes, however, impairs the local resolution of the detected signals. In this study, the open circuit voltage immediately after the cessation of charge/discharge is used for the mapping of reactant conversion. This quantity is not hampered by lateral flow of current and can be conveniently transformed to the corresponding state of charge. The difference between theoretically calculated and experimentally determined conversion (change in the state of charge) across the electrode is used to determine local variations in conversion efficiency. The method is validated by systematic experiments using electrodes with different modifications, varying current densities and flow configurations. The procedure and the interpretation are simple and scalable to any size of flow cell.
Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/1/2/pdfData sources: Multidisciplinary Digital Publishing InstituteDigital Repository of NTUArticle . 2019License: © 2019 by the Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Data sources: Digital Repository of NTUadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/1/2/pdfData sources: Multidisciplinary Digital Publishing InstituteDigital Repository of NTUArticle . 2019License: © 2019 by the Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Data sources: Digital Repository of NTUadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Ghimire, Purna C.; Bhattarai, Arjun; Schweiss, Rüdiger; Scherer, Günther G.; Wai, Nyunt; Yan, Qingyu;Abstract Graphite felts are the most commonly used electrode materials in vanadium redox flow batteries. In the conventional cell design, flat sheets of graphite bipolar plates and porous graphite felts are stacked without any bonding, which requires a certain degree of compression to minimize the contact resistance. Excessive compression of the electrode, however, leads to non-uniform flow distribution and potential occurrence of zones with the retarded flow of electrolyte. This study investigates a wide range of electrode compressions and their effect on the cell performance. The results show that a compression of 25% is the optimal trade-off between contact resistance, homogeneity of flow distribution and pumping losses. Moreover, spatially resolved measurements using a segmented cell are employed to visualize the flow distribution across the electrode in real time. The open circuit voltage after the termination of the cell charge/discharge is converted to the corresponding state of charge (SOC) of the electrolyte, and the difference between the theoretical and experimental state of charge of electrolyte is used to quantify the flow distribution across the electrode. The results show that the optimum conversion of the reactant can be achieved during a single pass at 25% electrode compression. This method of segmentation is simple and scalable to any size of the battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Royal Society of Chemistry (RSC) Qingyu Yan; Songting Cai; Xiaomi Zhang; Chris Wolverton; Shiqiang Hao; Runchu Ma; Xia Hua; Vinayak P. Dravid; Zhong-Zhen Luo; Zhong-Zhen Luo; Mercouri G. Kanatzidis; Gangjian Tan; Ctirad Uher; Trevor P. Bailey;doi: 10.1039/c8ee01755g
The off-centered Ge leads to the ultralow lattice thermal conductivity and record high average ZT for n-type PbSe.
Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Zixuan Chen; Hong-Hua Cui; Shiqiang Hao; Yukun Liu; Hui Liu; Jing Zhou; Yan Yu; Qingyu Yan; Christopher Wolverton; Vinayak P. Dravid; Zhong-Zhen Luo; Zhigang Zou; Mercouri G. Kanatzidis;doi: 10.1039/d3ee00183k
We improve n-type lead chalcogenides by adding GaSb to reduce lattice thermal conductivity and achieve conduction band convergence. This significantly enhances the thermoelectric performance of n-type PbS, making it comparable to its p-type counterpart.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.34 citations 34 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Funded by:UKRI | In Orbit Servicing Contro...UKRI| In Orbit Servicing Control Centre, National FacilityAuthors: Qingyu Yan; Mercouri G. Kanatzidis;pmid: 34675376
Thermoelectric materials can be potentially employed in solid-state devices that harvest waste heat and convert it to electrical power, thereby improving the efficiency of fuel utilization. The spectacular increases in the efficiencies of these materials achieved over the past decade have raised expectations regarding the use of thermoelectric generators in various energy saving and energy management applications, especially at mid to high temperature (400-900 °C). However, several important issues that prevent successful thermoelectric generator commercialization remain unresolved, in good part because of the lack of a research roadmap.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 613 citations 613 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Danwei Zhang; Mingkun Xie; Dorsasadat Safanama; Kivanc Saglik; Xian Yi Tan; Samantha Faye Duran Solco; Jing Cao; Chee Kiang Ivan Tan; Hongfei Liu; Suxi Wang; Qiang Zhu; Wen Hui Derrick Fam; Qingyu Yan; Jing Wu; Ady Suwardi;Decades of studies on thermoelectric materials have enabled the design of high‐performance materials based on basic materials properties, such as bandgap engineering. In general, bandgap energies correspond to the temperature at which the peak thermoelectric performance occurs. For instance, CuGaTe2 with a relatively wide bandgap of 1.2 eV has its peak zT > 1 at > 900 K. On the other hand, the zT is usually very low (<0.1) for this material at room temperature. This severely limits its average zT and hence overall performance. In this study, a phase diagram‐guided Sb alloying strategy to improve the low‐temperature zT of CuGaTe2 is used, by leveraging on the solubility limits to control the formation of the microstructural defects. The addition of Sb simultaneously improves the electrical conductivity and decreases the lattice thermal conductivity. For a low‐temperature range of 300–623 K, this Sb‐alloying strategy enables the achievement of a record high average zT of 0.33. The strategy developed in this study targets the improvement of the low‐temperature range of CuGaTe2, which is rarely focused on for wide‐bandgap ABX2 compounds, opening up more opportunities for holistic performance improvements, potentially enabling ultrahigh‐performance thermoelectrics over a wide temperature range.
Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Xiang Yun Debbie Soo; Joseph Kinyanjui Muiruri; Wen‐Ya Wu; Jayven Chee Chuan Yeo; +11 AuthorsXiang Yun Debbie Soo; Joseph Kinyanjui Muiruri; Wen‐Ya Wu; Jayven Chee Chuan Yeo; Suxi Wang; Nikodem Tomczak; Warintorn Thitsartarn; Beng Hoon Tan; Pei Wang; Fengxia Wei; Ady Suwardi; Jianwei Xu; Xian Jun Loh; Qingyu Yan; Qiang Zhu;pmid: 38594967
AbstractPolyethylene (PE), a highly prevalent non‐biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio‐based PE (bio‐PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio‐PE, including fermentation, gasification, and catalytic conversion of biomass. Interestingly, the bio‐PE production volumes and market are expanding due to the growing environmental concerns and regulatory pressures. Additionally, the production of PE and bio‐PE biocomposites using agricultural waste as filler materials, highlights the growing demand for sustainable alternatives to conventional plastics. According to previous studies, addition of ≈50% defibrillated corn and abaca fibers into bio‐PE matrix and a compatibilizer, results in the highest Young's modulus of 4.61 and 5.81 GPa, respectively. These biocomposites have potential applications in automotive, building construction, and furniture industries. Moreover, the advancement made in abiotic and biotic degradation of PE and PE biocomposites is elucidated to address their environmental impacts. Finally, the paper concludes with insights into the opportunities, challenges, and future perspectives in the sustainable production and utilization of PE and bio‐PE biocomposites. In summary, production of PE and bio‐PE biocomposites can contribute to a cleaner and sustainable future.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Zhong-Zhen Luo; Songting Cai; Shiqiang Hao; Trevor P. Bailey; Yubo Luo; Wenjun Luo; Yan Yu; Ctirad Uher; Christopher Wolverton; Vinayak P. Dravid; Zhigang Zou; Qingyu Yan; Mercouri G. Kanatzidis;doi: 10.1039/d1ee02986j
The discordant Zn and Ga atoms raise the carrier concentration and soften phonon modes, resulting in superior performance nanostructured n-type PbTe.
Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 151 citations 151 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
