- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Argentina, Czech Republic, Belgium, Germany, Argentina, United KingdomPublisher:Wiley Funded by:EC | UnderSCORE, SNSF | How does forest microclim..., EC | FORMICA +1 projectsEC| UnderSCORE ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimateKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;handle: 11336/157745 , 1854/LU-8746181
Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 May 2020 Czech Republic, Germany, Slovenia, United Kingdom, Belgium, Czech RepublicPublisher:American Association for the Advancement of Science (AAAS) Funded by:SNSF | How does forest microclim..., EC | PASTFORWARD, EC | FORMICASNSF| How does forest microclimate affect biodiversity dynamics? ,EC| PASTFORWARD ,EC| FORMICAJonathan Lenoir; Bogdan Jaroszewicz; Tomasz Durak; Marek Malicki; Pieter Vangansbeke; Hans Van Calster; Thilo Heinken; Balázs Teleki; Krzysztof Świerkosz; Markéta Chudomelová; Wolfgang Schmidt; Monika Wulf; Pieter De Frenne; Radim Hédl; František Máliš; Adrienne Ortmann-Ajkai; Tibor Standovár; Guillaume Decocq; Florian Zellweger; Florian Zellweger; Remigiusz Pielech; Imre Berki; David A. Coomes; Lander Baeten; Martin Macek; Kris Verheyen; Ondřej Vild; Jörg Brunet; Thomas A. Nagel; Thomas Dirnböck; Petr Petřík; Tobias Naaf; Kamila Reczyńska; Martin Kopecký; Martin Kopecký; Markus Bernhardt-Römermann;pmid: 32409476
handle: 11104/0315476 , 20.500.12556/RUL-116516 , 1854/LU-8674965
Local factors restrain forest warming Microclimates are key to understanding how organisms and ecosystems respond to macroclimate change, yet they are frequently neglected when studying biotic responses to global change. Zellweger et al. provide a long-term, continental-scale assessment of the effects of micro- and macroclimate on the community composition of European forests (see the Perspective by Lembrechts and Nijs). They show that changes in forest canopy cover are fundamentally important for driving community responses to climate change. Closed canopies buffer against the effects of macroclimatic change through their cooling effect, slowing shifts in community composition, whereas open canopies tend to accelerate community change through local heating effects. Science , this issue p. 772 ; see also p. 711
Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aba6880&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aba6880&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Argentina, Czech Republic, Belgium, Germany, Argentina, United KingdomPublisher:Wiley Funded by:EC | UnderSCORE, SNSF | How does forest microclim..., EC | FORMICA +1 projectsEC| UnderSCORE ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimateKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;handle: 11336/157745 , 1854/LU-8746181
Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 May 2020 Czech Republic, Germany, Slovenia, United Kingdom, Belgium, Czech RepublicPublisher:American Association for the Advancement of Science (AAAS) Funded by:SNSF | How does forest microclim..., EC | PASTFORWARD, EC | FORMICASNSF| How does forest microclimate affect biodiversity dynamics? ,EC| PASTFORWARD ,EC| FORMICAJonathan Lenoir; Bogdan Jaroszewicz; Tomasz Durak; Marek Malicki; Pieter Vangansbeke; Hans Van Calster; Thilo Heinken; Balázs Teleki; Krzysztof Świerkosz; Markéta Chudomelová; Wolfgang Schmidt; Monika Wulf; Pieter De Frenne; Radim Hédl; František Máliš; Adrienne Ortmann-Ajkai; Tibor Standovár; Guillaume Decocq; Florian Zellweger; Florian Zellweger; Remigiusz Pielech; Imre Berki; David A. Coomes; Lander Baeten; Martin Macek; Kris Verheyen; Ondřej Vild; Jörg Brunet; Thomas A. Nagel; Thomas Dirnböck; Petr Petřík; Tobias Naaf; Kamila Reczyńska; Martin Kopecký; Martin Kopecký; Markus Bernhardt-Römermann;pmid: 32409476
handle: 11104/0315476 , 20.500.12556/RUL-116516 , 1854/LU-8674965
Local factors restrain forest warming Microclimates are key to understanding how organisms and ecosystems respond to macroclimate change, yet they are frequently neglected when studying biotic responses to global change. Zellweger et al. provide a long-term, continental-scale assessment of the effects of micro- and macroclimate on the community composition of European forests (see the Perspective by Lembrechts and Nijs). They show that changes in forest canopy cover are fundamentally important for driving community responses to climate change. Closed canopies buffer against the effects of macroclimatic change through their cooling effect, slowing shifts in community composition, whereas open canopies tend to accelerate community change through local heating effects. Science , this issue p. 772 ; see also p. 711
Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aba6880&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aba6880&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
