- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Authors: Tilmann E. Kuhn;Abstract A general method for realistic performance evaluation of solar control properties of facades for facades with sun-shading or other solar control systems has been developed. It is particularly designed to be used for venetian blinds. It can be used used ‘stand-alone’ or within building simulation programs. The new method has proven to be of great practical value to planning teams of huge office buildings in Germany, Austria and Switzerland. The method is presented in detail in this paper. It can be used either ’stand-alone’ (without building simulation) for comparisons of different facade variants or within building simulation programs. Some parts of the proposed methodology could be used in standards (e.g. EN13363) or to improve the accuracy of building simulation programs which are currently on the market. Practical experience with the new methodology led to insights which are the basis for the design of two new products. These new products are compared with state of the art products in [T.E. Kuhn, Solar control: comparsion of two new systems with the state of the art on the basis of a new general evaluation method for facades with venetian blinds or other solar control systems, Energy and Buildings, in press] on the basis of the new methodology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2005.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2005.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Conference object 2014 GermanyPublisher:Elsevier BV Maurer, C.; Gasnier, D.; Pflug, T.; Plešec, P.; Hafner, J.; Jordan, S.; Kuhn, T.E.;AbstractA field of transparent solar thermal façade collectors (TSTC) was installed in a pilot building in Ljubljana, Slovenia. This paper presents the first measurement results from the installation. During the heating season, the transparent façade collectors contribute to the heating of the pilot building, while they provide heat to an adsorption chiller during the cooling season. Despite the different loads and surrounding conditions, the monthly solar gains of both seasons are similar. The heat flux between the collector and the interior as well as the temperatures seem comparable to a conventional solar control façade.
Fraunhofer-ePrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.02.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Fraunhofer-ePrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.02.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Francesco Frontini; Francesco Frontini; Tilmann E. Kuhn;The authors investigate the effect of the coating of various internal blinds on the operative room temperature in an office space. It is very important to correctly evaluate the impact of solar protection and daylight/glare systems on building comfort, and the resulting influence on human behaviour. Many building energy simulation programmes consider the Mean Radiant Temperature (MRT) independently of the actual emissivity of the internal surfaces. This approximation is acceptable for normal constructions with emissivity close to 1, but leads to considerable errors if low-emissivity paint or coatings are used. Starting from the theory of the net-radiation in a grey enclosure, the authors evaluate the MRT, assuming that the incoming flux and the radiated flux are the same. This method is based both on an ESP-r integrated whole-building-simulation programme and on an analytical method which allows for the correct evaluation of the thermal radiant field induced by considering the presence of surfaces with low-e coatings. The method can be used either ‘stand-alone’ for comparisons of different facade variants or within a building simulation. The simulations carried out indicate that when an ‘absorptive blind’ surface faces outwards, the summer temperature can be reduced by about 1 K at a position close to the facade.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 GermanyPublisher:Elsevier BV Funded by:EC | COST-EFFECTIVEEC| COST-EFFECTIVEAuthors: Maurer, C.; Kuhn, T.E.;Transparent solar thermal collectors (TSTC) represent a new development. An adequate model is needed to predict their performance. This paper presents a collector model with an advanced calculation of the transmission of diffuse radiation and a connection to the building which allows analysis of the collector gains and of the g value, also called “solar factor”, “solar heat gain coefficient (SHGC)” or “total solar energy transmittance”. The model is implemented as a TRNSYS Type and a coupled simulation between a collector and a room is presented for different facade constructions. Facade areas with glazing and venetian blinds are simulated with a second new TRNSYS Type which introduces high modelling accuracy for facades with solar control systems. An HVAC system is presented together with a first estimate of possible reductions of primary energy. It indicates primary energy savings of about 30% by replacing opaque walls with transparent collectors. The g values prove to depend not only on the irradiation, but also on the operation of the solar collectors and vary e.g. between 0.04 and 0.21. Detailed modelling of active facades like TSTC is therefore essential for accurate predictions of the collector gain, the heating and cooling loads and the thermal comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 SloveniaPublisher:MDPI AG Jordan, Sabina; Hafner, Jože; Kuhn, Tilmann E.; Legat, Andraž; Zbašnik-Senegačnik, Martina;doi: 10.3390/su71013169
handle: 20.500.12556/RUL-130392
In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS) model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.
Sustainability arrow_drop_down SustainabilityOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/10/13169/pdfData sources: Multidisciplinary Digital Publishing InstituteRepository of the University of LjubljanaArticle . 2015Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su71013169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/10/13169/pdfData sources: Multidisciplinary Digital Publishing InstituteRepository of the University of LjubljanaArticle . 2015Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su71013169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Christoph Maurer; Monica Siroux; Tilmann E. Kuhn; Nikolaus Nestle; Thibault Pflug; Thibault Pflug;Abstract In this contribution, a new model of switchable insulation element is introduced. This element essentially consists of a double glazing unit with a translucent insulating panel mounted inside. Switching of the U-value is achieved by control of an internal convective flow around the insulation panel. The element can be in an insulating state with a low U-value, or in a conducting state with a high U-value. First the new model of the element, based on numerous thermal, hydraulic and optical assumptions, is introduced. The airflow rate is calculated by balancing the pressure drops and the buoyancy driving force. The model is validated against U-value measurements, showing a reasonable accuracy. Finally, the model is used for a parametric analysis, where the influence of different thermophysical properties on the U-value and g-value of the element in insulating and conducting state is investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Germany, Australia, AustraliaPublisher:Elsevier BV Julian Stengel; K. Fath; K. Fath; Frank Schultmann; Wendelin Sprenger; Helen Rose Wilson; Tilmann E. Kuhn;handle: 2440/94307
Abstract This study presents and demonstrates a methodology for calculating the economic potential of photovoltaic installations in urban areas including the previously often disregarded potential on building facades. The analysis of a 2 km2 urban area has shown that building facades there provide almost triple the area of building roofs. However due to non-optimal inclination and orientation, they receive only 41% of the total irradiation. From this, the economic potential under present market conditions was calculated, resulting in 17% of all analyzed building surfaces, i.e. 0.3 km2 of roof surfaces being economically exploitable for photovoltaic installations already now which corresponds to an installed capacity of 47 MWp. Considering further a material substitution from the building integration of the photovoltaic installations, an economic potential of up to 56 MWp or 0.4 km2 results, of which up to 6 MWp or 0.04 km2 are economically installable on building facades. Facade-mounted installations would then account for 13% of the economic potential. The calculation of an economic potential and additionally considering the material substitution from building integration both constitute an extension to many existing renewable energy potential studies just focusing on the technical potential. However, only the economic potential allows forecasts of the future diffusion of this technology.
Solar Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: Werner Platzer; Tilmann E. Kuhn; Christopher Bühler;Sun-shading systems have to provide thermal and visual comfort both reliably and economically. At the same time, they should prevent unwanted solar gains in summer and permit high solar gains in winter. This paper describes a method to assess the overheating protection offered by different types of sun-shading systems together with the associated control strategy. The objective of the new method is to provide a simple but reliable and realistic approach to evaluate the effectiveness of internal and external shading devices in combination with glazing, which is independent of the building type. The new method consists of the angle-dependent determination of the total solar energy transmittance, g, based on ray-tracing methods, which has been validated using calorimetric measurements. Combination with annual irradiance distributions allows for the evaluation of different control strategies. This paper shows that it is essential for the reliability of calculated cooling and heating loads, that the calculation is based on a control strategy, which reflects the priorities of the users of the building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-092x(01)00017-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-092x(01)00017-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Tilmann E. Kuhn;Abstract The paper describes procedures for the direct calorimetric measurement of the solar heat gain coefficient g in detail. g is also called SHGC, solar factor, g-value or total solar energy transmittance TSET. All these terms are used synonymously in this document although there are some differences in the details of the definitions of these properties (e.g. different reference wind conditions or reference solar spectra). The document aims to summarize more than 25 years of experience in g-value testing at Fraunhofer ISE, Freiburg, Germany, which includes many different transparent and translucent building materials ranging from transparent insulation materials to daylighting and solar control systems and active solar energy harvesting facade components like building-integrated PV systems (BIPV) or building-integrated solar thermal collectors (BIST). The document focuses on methods for the calorimetric measurement of g under steady-state laboratory conditions. Transient outdoor measurements are beyond the scope of this paper. It also describes the corresponding error analysis and methods to correct experimentally determined values gexp to reference conditions, if it is not possible to reproduce the reference boundary conditions exactly in the laboratory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 GermanyPublisher:Elsevier BV Authors: Maurer, C.; Cappel, C.; Kuhn, T.E.;Abstract Building-integrated solar thermal systems (BIST) outperform building-added solar thermal systems (BAST) due to smaller heat losses at the back of the collector. BIST offer economic advantages, too. The insulation behind the collector can be used to reduce the heating demand of the building as well as to increase the solar thermal yield. Therefore, less material and labour are needed. Of course, the energy flux to the building interior needs to be considered. This energy flux depends in general on the operation of the collector as well as on the irradiance. Several innovative solar thermal building skins have been modelled in detail to analyze this coupling between the active building skin and the building. However, planners need an easy approach to include BIST into their calculations. Often, there is not enough budget to measure and model the new facade. This paper presents several new and simple models which are more accurate than neglecting the coupling to the building and which are less complex than detailed physical models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Authors: Tilmann E. Kuhn;Abstract A general method for realistic performance evaluation of solar control properties of facades for facades with sun-shading or other solar control systems has been developed. It is particularly designed to be used for venetian blinds. It can be used used ‘stand-alone’ or within building simulation programs. The new method has proven to be of great practical value to planning teams of huge office buildings in Germany, Austria and Switzerland. The method is presented in detail in this paper. It can be used either ’stand-alone’ (without building simulation) for comparisons of different facade variants or within building simulation programs. Some parts of the proposed methodology could be used in standards (e.g. EN13363) or to improve the accuracy of building simulation programs which are currently on the market. Practical experience with the new methodology led to insights which are the basis for the design of two new products. These new products are compared with state of the art products in [T.E. Kuhn, Solar control: comparsion of two new systems with the state of the art on the basis of a new general evaluation method for facades with venetian blinds or other solar control systems, Energy and Buildings, in press] on the basis of the new methodology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2005.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2005.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Conference object 2014 GermanyPublisher:Elsevier BV Maurer, C.; Gasnier, D.; Pflug, T.; Plešec, P.; Hafner, J.; Jordan, S.; Kuhn, T.E.;AbstractA field of transparent solar thermal façade collectors (TSTC) was installed in a pilot building in Ljubljana, Slovenia. This paper presents the first measurement results from the installation. During the heating season, the transparent façade collectors contribute to the heating of the pilot building, while they provide heat to an adsorption chiller during the cooling season. Despite the different loads and surrounding conditions, the monthly solar gains of both seasons are similar. The heat flux between the collector and the interior as well as the temperatures seem comparable to a conventional solar control façade.
Fraunhofer-ePrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.02.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Fraunhofer-ePrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.02.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Francesco Frontini; Francesco Frontini; Tilmann E. Kuhn;The authors investigate the effect of the coating of various internal blinds on the operative room temperature in an office space. It is very important to correctly evaluate the impact of solar protection and daylight/glare systems on building comfort, and the resulting influence on human behaviour. Many building energy simulation programmes consider the Mean Radiant Temperature (MRT) independently of the actual emissivity of the internal surfaces. This approximation is acceptable for normal constructions with emissivity close to 1, but leads to considerable errors if low-emissivity paint or coatings are used. Starting from the theory of the net-radiation in a grey enclosure, the authors evaluate the MRT, assuming that the incoming flux and the radiated flux are the same. This method is based both on an ESP-r integrated whole-building-simulation programme and on an analytical method which allows for the correct evaluation of the thermal radiant field induced by considering the presence of surfaces with low-e coatings. The method can be used either ‘stand-alone’ for comparisons of different facade variants or within a building simulation. The simulations carried out indicate that when an ‘absorptive blind’ surface faces outwards, the summer temperature can be reduced by about 1 K at a position close to the facade.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 GermanyPublisher:Elsevier BV Funded by:EC | COST-EFFECTIVEEC| COST-EFFECTIVEAuthors: Maurer, C.; Kuhn, T.E.;Transparent solar thermal collectors (TSTC) represent a new development. An adequate model is needed to predict their performance. This paper presents a collector model with an advanced calculation of the transmission of diffuse radiation and a connection to the building which allows analysis of the collector gains and of the g value, also called “solar factor”, “solar heat gain coefficient (SHGC)” or “total solar energy transmittance”. The model is implemented as a TRNSYS Type and a coupled simulation between a collector and a room is presented for different facade constructions. Facade areas with glazing and venetian blinds are simulated with a second new TRNSYS Type which introduces high modelling accuracy for facades with solar control systems. An HVAC system is presented together with a first estimate of possible reductions of primary energy. It indicates primary energy savings of about 30% by replacing opaque walls with transparent collectors. The g values prove to depend not only on the irradiation, but also on the operation of the solar collectors and vary e.g. between 0.04 and 0.21. Detailed modelling of active facades like TSTC is therefore essential for accurate predictions of the collector gain, the heating and cooling loads and the thermal comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 SloveniaPublisher:MDPI AG Jordan, Sabina; Hafner, Jože; Kuhn, Tilmann E.; Legat, Andraž; Zbašnik-Senegačnik, Martina;doi: 10.3390/su71013169
handle: 20.500.12556/RUL-130392
In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS) model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.
Sustainability arrow_drop_down SustainabilityOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/10/13169/pdfData sources: Multidisciplinary Digital Publishing InstituteRepository of the University of LjubljanaArticle . 2015Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su71013169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/10/13169/pdfData sources: Multidisciplinary Digital Publishing InstituteRepository of the University of LjubljanaArticle . 2015Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su71013169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Christoph Maurer; Monica Siroux; Tilmann E. Kuhn; Nikolaus Nestle; Thibault Pflug; Thibault Pflug;Abstract In this contribution, a new model of switchable insulation element is introduced. This element essentially consists of a double glazing unit with a translucent insulating panel mounted inside. Switching of the U-value is achieved by control of an internal convective flow around the insulation panel. The element can be in an insulating state with a low U-value, or in a conducting state with a high U-value. First the new model of the element, based on numerous thermal, hydraulic and optical assumptions, is introduced. The airflow rate is calculated by balancing the pressure drops and the buoyancy driving force. The model is validated against U-value measurements, showing a reasonable accuracy. Finally, the model is used for a parametric analysis, where the influence of different thermophysical properties on the U-value and g-value of the element in insulating and conducting state is investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Germany, Australia, AustraliaPublisher:Elsevier BV Julian Stengel; K. Fath; K. Fath; Frank Schultmann; Wendelin Sprenger; Helen Rose Wilson; Tilmann E. Kuhn;handle: 2440/94307
Abstract This study presents and demonstrates a methodology for calculating the economic potential of photovoltaic installations in urban areas including the previously often disregarded potential on building facades. The analysis of a 2 km2 urban area has shown that building facades there provide almost triple the area of building roofs. However due to non-optimal inclination and orientation, they receive only 41% of the total irradiation. From this, the economic potential under present market conditions was calculated, resulting in 17% of all analyzed building surfaces, i.e. 0.3 km2 of roof surfaces being economically exploitable for photovoltaic installations already now which corresponds to an installed capacity of 47 MWp. Considering further a material substitution from the building integration of the photovoltaic installations, an economic potential of up to 56 MWp or 0.4 km2 results, of which up to 6 MWp or 0.04 km2 are economically installable on building facades. Facade-mounted installations would then account for 13% of the economic potential. The calculation of an economic potential and additionally considering the material substitution from building integration both constitute an extension to many existing renewable energy potential studies just focusing on the technical potential. However, only the economic potential allows forecasts of the future diffusion of this technology.
Solar Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: Werner Platzer; Tilmann E. Kuhn; Christopher Bühler;Sun-shading systems have to provide thermal and visual comfort both reliably and economically. At the same time, they should prevent unwanted solar gains in summer and permit high solar gains in winter. This paper describes a method to assess the overheating protection offered by different types of sun-shading systems together with the associated control strategy. The objective of the new method is to provide a simple but reliable and realistic approach to evaluate the effectiveness of internal and external shading devices in combination with glazing, which is independent of the building type. The new method consists of the angle-dependent determination of the total solar energy transmittance, g, based on ray-tracing methods, which has been validated using calorimetric measurements. Combination with annual irradiance distributions allows for the evaluation of different control strategies. This paper shows that it is essential for the reliability of calculated cooling and heating loads, that the calculation is based on a control strategy, which reflects the priorities of the users of the building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-092x(01)00017-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-092x(01)00017-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Tilmann E. Kuhn;Abstract The paper describes procedures for the direct calorimetric measurement of the solar heat gain coefficient g in detail. g is also called SHGC, solar factor, g-value or total solar energy transmittance TSET. All these terms are used synonymously in this document although there are some differences in the details of the definitions of these properties (e.g. different reference wind conditions or reference solar spectra). The document aims to summarize more than 25 years of experience in g-value testing at Fraunhofer ISE, Freiburg, Germany, which includes many different transparent and translucent building materials ranging from transparent insulation materials to daylighting and solar control systems and active solar energy harvesting facade components like building-integrated PV systems (BIPV) or building-integrated solar thermal collectors (BIST). The document focuses on methods for the calorimetric measurement of g under steady-state laboratory conditions. Transient outdoor measurements are beyond the scope of this paper. It also describes the corresponding error analysis and methods to correct experimentally determined values gexp to reference conditions, if it is not possible to reproduce the reference boundary conditions exactly in the laboratory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 GermanyPublisher:Elsevier BV Authors: Maurer, C.; Cappel, C.; Kuhn, T.E.;Abstract Building-integrated solar thermal systems (BIST) outperform building-added solar thermal systems (BAST) due to smaller heat losses at the back of the collector. BIST offer economic advantages, too. The insulation behind the collector can be used to reduce the heating demand of the building as well as to increase the solar thermal yield. Therefore, less material and labour are needed. Of course, the energy flux to the building interior needs to be considered. This energy flux depends in general on the operation of the collector as well as on the irradiance. Several innovative solar thermal building skins have been modelled in detail to analyze this coupling between the active building skin and the building. However, planners need an easy approach to include BIST into their calculations. Often, there is not enough budget to measure and model the new facade. This paper presents several new and simple models which are more accurate than neglecting the coupling to the building and which are less complex than detailed physical models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu