- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 TurkeyPublisher:Elsevier BV Abstract Alcohol based fuels attract the attention of alternative fuel researchers. Many studies have been performed about combustion, performance and emission characteristics of alcohol used in internal combustion engines. Fusel oil is an alcohol based fuel obtained as a by-product during alcohol fermentation. Up to the present there has been no study regarding the combustion characteristics of fusel oil in a spark ignition engine. In this experimental study, performance, emission and combustion characteristics of fusel oil were examined in a spark ignition engine at 2500 rpm and four different engine loads. In-cylinder pressures, heat release rates, flame development and flame propagation durations, crank angles corresponding 50% of total mass fraction burnt, engine torque, brake specific fuel consumptions, CO, HC and NO x emissions were investigated. The water content and lower heating value of the fusel oil aggravated the combustion. Flame development and flame propagation durations were prolonged. As a result engine performance dropped. In addition, fusel oil usage increased CO and HC emissions up to 21% and 25% respectively. NO x emissions decreased about 31% due to worse combustion performance of fusel oil.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:International Journal of Automotive Engineering and Technologies Authors:Ahmet UYUMAZ;
Ahmet UYUMAZ
Ahmet UYUMAZ in OpenAIREFatih AKSOY;
Fatih AKSOY
Fatih AKSOY in OpenAIREFatih AKAY;
Fatih AKAY
Fatih AKAY in OpenAIREŞükrü Ayhan BAYDIR;
+4 AuthorsŞükrü Ayhan BAYDIR
Şükrü Ayhan BAYDIR in OpenAIREAhmet UYUMAZ;
Ahmet UYUMAZ
Ahmet UYUMAZ in OpenAIREFatih AKSOY;
Fatih AKSOY
Fatih AKSOY in OpenAIREFatih AKAY;
Fatih AKAY
Fatih AKAY in OpenAIREŞükrü Ayhan BAYDIR;
Şükrü Ayhan BAYDIR
Şükrü Ayhan BAYDIR in OpenAIREHamit SOLMAZ;
Hamit SOLMAZ
Hamit SOLMAZ in OpenAIREEmre YILMAZ;
Emre YILMAZ
Emre YILMAZ in OpenAIREBilal Aydoğan;
Bilal Aydoğan
Bilal Aydoğan in OpenAIREAlper CALAM;
Alper CALAM
Alper CALAM in OpenAIREIn this study, the biodiesel obtained from the waste olive oil by transesterification method has been mixed with a 30% of diesel fuel as volume and tested with a single cylinder direct injection diesel engine. The main purpose of this study is to obtain purer biodiesel from waste olive oil using methyl alcohol (CH3OH) and sodium hydroxide (NaOH) as catalyst in the transesterification method and research performance, combustion and emission characteristics in detail in a direct injection diesel engine. The combustion, engine performance and exhaust emission values have been also compared with diesel fuel. The test engine was operated at a constant speed of 2200 rpm and different engine loads such as 3.25 Nm, 7.5 Nm, 11.25 Nm, 18.75 Nm. According to the experimental results, the thermal efficiency of biodiesel is lower by about 1% to 5% than diesel. CO is lower about 37.5 % with biodiesel than that of diesel at 18.75 Nm. CO2 is higher 41% with biodiesel than diesel at 11.25 Nm. NOx was measured 9.5% higher than diesel fuel at 18.75 Nm. Soot emissions decreased by 37.5% compared to diesel.
International Journa... arrow_drop_down International Journal of Automotive Engineering and TechnologiesArticle . 2019 . Peer-reviewedData sources: CrossrefInternational Journal of Automotive Engineering and TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18245/ijaet.578227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Automotive Engineering and TechnologiesArticle . 2019 . Peer-reviewedData sources: CrossrefInternational Journal of Automotive Engineering and TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18245/ijaet.578227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors:Alper Calam;
Alper Calam
Alper Calam in OpenAIREHamit Solmaz;
Hamit Solmaz
Hamit Solmaz in OpenAIREEmre Yılmaz;
Emre Yılmaz
Emre Yılmaz in OpenAIREYakup İçingür;
Yakup İçingür
Yakup İçingür in OpenAIREAbstract In this study effects of compression ratio on HCCI combustion, performance and emissions was investigated parametrically. In addition to parametric investigation and as a novel way of the paper engine BSFC maps were obtained for RON20 andRON40 fuels and each compression ratios of 9:1, 10:1, 11:1 and 12:1. The parametric experiments were carried out at 800 rpm engine speed. In both parametric and mapping experiments were conducted at intake temperature of 353 K. In-cylinder pressure, ROHR, combustion duration, start of combustion, indicated mean effective pressure, thermal efficiency and CO, HC and NOx emissions were examined. It was determined that in-cylinder pressure and rate of heat release decreased while the mixture getting leaner. The increase of octane number of fuel led to extension of combustion duration. On the contrary, combustion duration decreased along with the increase of compression ratio. It was found that the CO and HC emission were high while NOx emissions were low at lower CR. With the increase of CR, CO and HC emissions decreased however NOx emissions increased. The maximum thermal efficiency was obtained as 38.2% at 800 rpm and 12:1 CR with RON40 fuel. The widest operational region was obtained with RON20 fuel at CR of 10:1 with a minimum BSFC value of 210 g/kWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.12.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.12.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:SAE International Gazi Üniversitesi - ... arrow_drop_down SAE International Journal of Fuels and LubricantsArticle . 2022 . Peer-reviewedData sources: CrossrefSAE International Journal of Fuels and LubricantsArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/04-16-01-0001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Gazi Üniversitesi - ... arrow_drop_down SAE International Journal of Fuels and LubricantsArticle . 2022 . Peer-reviewedData sources: CrossrefSAE International Journal of Fuels and LubricantsArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/04-16-01-0001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Springer Science and Business Media LLC Authors: Babagiray, Mustafa;Solmaz, HAMİT;
Solmaz, HAMİT
Solmaz, HAMİT in OpenAIRECalam, Alper;
Ardebili, Seyed Mohammad Safieddin; +1 AuthorsCalam, Alper
Calam, Alper in OpenAIREBabagiray, Mustafa;Solmaz, HAMİT;
Solmaz, HAMİT
Solmaz, HAMİT in OpenAIRECalam, Alper;
Ardebili, Seyed Mohammad Safieddin;Calam, Alper
Calam, Alper in OpenAIREKocakulak, Tolga;
Kocakulak, Tolga
Kocakulak, Tolga in OpenAIREIn this study, the performance and exhaust emissions of homogeneous charge compression ignition engine fueled by gasoline fuel were modeled by using the response surface method. The effect of independent variables-compression ratio, engine speed inlet air temperature, lambda value, and research octane number value-on responses such as indicated mean effective pressure, indicated thermal efficiency, maximum pressure rise rate, specific fuel consumption, cyclic differences was studied together; unburned hydrocarbons, carbon monoxide, and nitrogen oxide are predicted by multi-regression. The desirability function was used to define an optimum combination of engine operating conditions. High desirability of 77% was achieved at the compression ratio of 12, intake air temperature of 333 K, lambda value of 1.8, engine speed of 935 rpm, and RON40. This homogeneous charge compression ignition engine operating condition was suggested as the optimum independent variables. At this point, 5.08 of indicated mean effective pressure, 35% of indicated thermal efficiency, 243.28 g/kWh of specific fuel consumption, 4.43 bar/CA of maximum pressure rise rate, and 3% of COVimep were achieved as responses. Additionally, the optimum values of engine emissions were found to be 355.586 ppm for unburned hydrocarbons, 3% for carbon monoxide, and 0 ppm for nitrogen oxide. This study showed that changes in performance and exhaust emissions of a homogeneous charge compression ignition engine could be successfully predicted using the response surface method. This study, which was carried out with the RSM technique, reduced the hundreds of data points needed, and all variables could be examined with only 60 data points.
International Journa... arrow_drop_down International Journal of Environmental Science and TechnologyArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13762-022-04499-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Science and TechnologyArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13762-022-04499-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 TurkeyPublisher:Elsevier BV This study presents a beta type Stirling engine mechanism and its performance analysis. The displacer motion of the engine is performed by a lever mechanism. The performance of the engine was investigated via comparing with a rhombic-drive engine possessing an equal sided rhombic. Comparison was made for kinematic behaviors, power and thermal efficiency. For comparison; the piston swept volume, the inner heat transfer area, the hot and cold end temperatures, the inner heat transfer coefficient, charge pressure and dead volumes were kept equal for both engines. As working fluid the helium was used. Thermodynamic treatments of engines were performed via the nodal analysis. The power of the lever driven engine was found to be greater than the power of the rhombic drive engine. Under the equal charge pressure, the thermal efficiency of the lever driven engine was found to be lower than the efficiency of the rhombic drive engine however, under the equal working fluid mass the thermal efficiency of the lever driven engine was found to be greater than that of the rhombic drive engine. The external volume and mass of the lever driven engine is lower than the rhombic drive engine.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 TurkeyPublisher:Springer Science and Business Media LLC Authors: Seyed Mohammad Safieddin Ardebili;Alper Calam;
Alper Calam
Alper Calam in OpenAIREHamit Solmaz;
Ahmet Böğrek; +1 AuthorsHamit Solmaz
Hamit Solmaz in OpenAIRESeyed Mohammad Safieddin Ardebili;Alper Calam;
Alper Calam
Alper Calam in OpenAIREHamit Solmaz;
Ahmet Böğrek; Can Haşimoğlu;Hamit Solmaz
Hamit Solmaz in OpenAIREIn the present study, performance of an HCCI engine powered with ethanol/toluene/n-heptane tri-fuel blend was optimized by using response surface method. The studied independent parameters were engine speed, lambda ratio, and fuel blends. The impact of these parameters on engine torque, COVimep, CA10, CA50, indicated thermal efficiency, IMEP along with emissions of NOX, CO, and HC comprehensively investigated. According to the results, the optimal HCCI engine operation condition was proposed as engine speed of 1343 rpm, lambda value of 2.29, and ethanol ratio of 22%. At this condition, the engine outputs, i.e., IMEP, COVimep, indicated thermal efficiency, CA10, and CA50, engine torque were estimated to be 4.21 bar, 4.28%, 0.37, 1.41 °CA, 4.62 °CA, and 8.2 Nm, respectively. The engine-out emissions, including HC, NOX, and CO emission, were predicted to be 243 ppm, 1.05 ppm, and 0.03%, respectively. The result indicates that using ethanol/toluene/n-heptane fuel mixture improved the HCCI combustion and NOX emission. The near-zero NOX emissions were recorded at all fuel mixture. However, enhancing ethanol ratio in the fuel blends showed an increase in CO and HC emissions. Overall, this study showed that response surface technique could be used as a promising method to model the HCCI engines.
Journal of the Brazi... arrow_drop_down Journal of the Brazilian Society of Mechanical Sciences and EngineeringArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40430-024-05060-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 21 Powered bymore_vert Journal of the Brazi... arrow_drop_down Journal of the Brazilian Society of Mechanical Sciences and EngineeringArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40430-024-05060-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 TurkeyPublisher:Elsevier BV Authors: Serhat Günaydin; Ahmet Uyumaz;Tolga Kocakulak;
Sertaç Coşman; +2 AuthorsTolga Kocakulak
Tolga Kocakulak in OpenAIRESerhat Günaydin; Ahmet Uyumaz;Tolga Kocakulak;
Sertaç Coşman;Tolga Kocakulak
Tolga Kocakulak in OpenAIREHamit Solmaz;
Fatih Aksoy;Hamit Solmaz
Hamit Solmaz in OpenAIREIgnition characteristics of diesel are weak due to higher viscosity and density especially at cold start conditions. So, it is seen that the usage of dibutyl maleate having high content of oxygen as an additive to improve the bad properties of pure diesel is essential and sensible. In this research, a single cylinder DI diesel engine was operated at four different engine loads including 4.12, 9.61, 15.10 and 20.60 Nm to observe and see the influences of dibutyl maleate on performance and combustion characteristics such as heat release rate, in-cylinder pressure, ignition delay etc. and thermal efficiency. It was found that in-cylinder pressure decreased with the addition of dibutyl maleate whereas remarkable increase was observed on pressure rise rate and ringing intensity with fuel blends. ID (Ignition delay) period increased with dibutyl maleate addition into diesel due to lower cetane number while combustion duration shortened with fuel blends compared to diesel. Besides, indicated thermal efficiency decreased about 20.18% and 24.25% with D90DBM10 and D90DBM20 respectively according to neat diesel at 15.10 Nm. Specific fuel consumption increased 5.08% and 8.13% with D90DBM10 and D90DBM20 respectively compared that neat diesel. It was also seen that cyclic variations increased in case of usage dibutyl maleate addition. Test results also demonstrated that HC (Hydrocarbon) and soot reduced while CO (carbon monoxide), CO2 (carbon dioxide) and NOx (nitrogen oxides) raised with the usage of dibutyl maleate compared to neat diesel.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 TurkeyPublisher:MDPI AG Funded by:NSF | GOALI/Collaborative Resea...NSF| GOALI/Collaborative Research: Easily Verifiable Controller DesignAuthors:Serdar Halis;
Serdar Halis
Serdar Halis in OpenAIREHamit Solmaz;
Seyfi Polat;Hamit Solmaz
Hamit Solmaz in OpenAIREH. Yücesu;
H. Yücesu
H. Yücesu in OpenAIREdoi: 10.3390/su151310406
handle: 11499/52039
In this numerical study, the effects of the premixed ratio, intake manifold pressure and intake air temperature on a four-cylinder, four-stroke, direct injection, low-compression-ratio gasoline engine, operated in reactivity-controlled compression ignition (RCCI) combustion mode at a constant engine speed of 1000 rpm, were investigated using Converge CFD software. The results of numerical analyses showed that the maximum in-cylinder pressure and heat release rate (HRR) increased and the combustion phase advanced depending on the rise in both intake manifold pressure and intake air temperature. The CA50 shifted by 18.5 °CA with an increment in the intake air temperature from 60 °C to 100 °C. It was observed that the combustion duration dropped from 44 °CA to 38 °CA upon boosting the intake manifold pressure from 103 kPa to 140 kPa. Moreover, a delay in the combustion phase occurred at a constant intake air temperature with an increasing premixed ratio. The maximum value of in-cylinder pressure was recorded as 36.15 bar (at 11 °CA aTDC) with the use of PRF20. Additionally, as the content of iso-octane in the fuel mixture was increased, combustion delay occurred, and the maximum value of in-cylinder temperature obtained was 11 °CA aTDC using PRF20 fuel at the earliest point. While HC and CO emissions reached the highest values at a 60 °C intake air temperature, NOx and soot emission values were detected at quite low levels at this temperature. The values of all these emissions increased with rising intake manifold pressure and reached their highest values at 140 kPa. In addition, while the highest HC and CO emission values were observed with the use of PRF60 fuel, the results revealed that the control of the combustion phase in the RCCI strategy is notably affected by the premixed ratio, intake manifold pressure and intake air temperature.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing InstitutePamukkale University RepositoryArticle . 2023Full-Text: https://hdl.handle.net/11499/52039Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151310406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing InstitutePamukkale University RepositoryArticle . 2023Full-Text: https://hdl.handle.net/11499/52039Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151310406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors:Ahmet Yakın;
Rasim Behcet;Ahmet Yakın
Ahmet Yakın in OpenAIREHamit Solmaz;
Hamit Solmaz
Hamit Solmaz in OpenAIRESerdar Halis;
Serdar Halis
Serdar Halis in OpenAIREhandle: 11499/47425
Additives are added to conventional fuels to ensure complete combustion of fuels, increase engine performance and reduce harmful emissions from vehicles. Hydrogen and oxygen-containing fuel additives added to fossil-based internal combustion engine fuels improve the properties of the fuels and reduce vehicle-related emissions. Evaluation of mixed fuels created by adding different types of alcohol and nano-sized additives to motor fuels as an alternative fuel in motor vehicles is among the most researched scientific studies recently. In this study, alcohol-gasoline fuels (E5, M5), NaBH4-alcoholgasoline fuels (ES5, MS5), and pure gasoline were tested in a gasoline engine. Fuels used in engine tests; E5 fuel (5% by volume ethanol 95% gasoline blend), M5 fuel (5% by volume methanol 95% gasoline blend), ES5 fuel (5% by volume NaBH4-ethanol solution 95% gasoline blend), MS5 fuel (5% by volume NaBH4methanol solution 95% gasoline mixture) and pure gasoline. In the experiments, brake thermal efficiency, engine torque, specific fuel consumption, and exhaust gas temperature were measured and compared with pure gasoline. Compared to gasoline, the exhaust gas temperatures of all blended fuels decreased. On the other hand, there was an increase in engine torque values, except for ES5 fuel. At the same time, there was an increase in both specific fuel consumption and brake thermal efficiency. When the CO and HC emission values of the blended fuels are compared with the gasoline fuel values, the highest reduction in CO emissions occurred in ES5 blended fuel with 65.53%, while the highest decrease in HC emission was realized in E5 fuel with 19.09%. On the other hand, when NOx and CO2 emissions of E5, M5, ES5, MS5 mixed fuels are compared with gasoline, NOx emissions are 12.63%, 28.37%, 19.65%, respectively; decreased by 36.03% but CO2 emissions increased by 8.51%, 30.46%, 34.48%, 25.95% respectively.(c) 2022 Elsevier Ltd. All rights reserved.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.energy.2022.124300Data sources: Bielefeld Academic Search Engine (BASE)Van Yüzüncü Yıl University Academic Data Management SystemArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.energy.2022.124300Data sources: Bielefeld Academic Search Engine (BASE)Van Yüzüncü Yıl University Academic Data Management SystemArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu