- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint 2020 United Kingdom, France, Austria, Netherlands, France, Belgium, FrancePublisher:Copernicus GmbH Funded by:EC | VERIFYEC| VERIFYFrédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2022Geoscientific Model DevelopmentArticle . 2022License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsGeoscientific Model DevelopmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2022Geoscientific Model DevelopmentArticle . 2022License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsGeoscientific Model DevelopmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, France, Belgium, United KingdomPublisher:Copernicus GmbH A. Bastos; P. Ciais; F. Chevallier; C. Rödenbeck; A. P. Ballantyne; A. P. Ballantyne; F. Maignan; Y. Yin; M. Fernández-Martínez; P. Friedlingstein; J. Peñuelas; J. Peñuelas; S. L. Piao; S. Sitch; W. K. Smith; X. Wang; Z. Zhu; V. Haverd; E. Kato; A. K. Jain; S. Lienert; D. Lombardozzi; J. E. M. S. Nabel; P. Peylin; B. Poulter; D. Zhu;Abstract. Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 exchange in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric inversions (consistent with atmospheric records) and from and 11 state-of-the-art land-surface models (LSMs) to evaluate the relative importance of individual contributors to trends and drivers of the SCA of CO2-fluxes for 1980−2015. The LSMs generally reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute SCA increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of CO2 fertilisation (positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor to the increase in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA trends, which suggests SCA could help to constrain model turnover times.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Shuai, An; Xiaoqiu, Chen; Fangjun, Li; Xuhui, Wang; Miaogen, Shen; Xiangzhong, Luo; Shilong, Ren; Hongfang, Zhao; Yan, Li; Lin, Xu;pmid: 38663615
As a sensitive indicator of climate change and a key variable in ecosystem surface-atmosphere interaction, vegetation phenology, and the growing season length, as well as climatic factors (i.e., temperature, precipitation, and sunshine duration) are widely recognized as key factors influencing vegetation productivity. Recent studies have highlighted the importance of soil moisture in regulating grassland productivity. However, the relative importance of phenology, climatic factors, and soil moisture to plant species-level productivity across China's grasslands remains poorly understood. Here, we use nearly four decades (1981 to 2018) of in situ species-level observations from 17 stations distributed across grasslands in China to examine the key mechanisms that control grassland productivity. The results reveal that soil moisture is the strongest determinant of the interannual variability in grassland productivity. In contrast, the spring/autumn phenology, the length of vegetation growing season, and climate factors have relatively minor impacts. Generally, annual aboveground biomass increases by 3.9 to 25.3 g∙m2 (dry weight) with a 1 % increase in growing season mean soil moisture across the stations. Specifically, the sensitivity of productivity to moisture in wetter and colder environments (e.g., alpine meadows) is significantly higher than that in drier and warmer environments (e.g., temperate desert steppes). In contrast, the sensitivity to the precipitation of the latter is greater than the former. The effect of soil moisture is the most pronounced during summer. Dominant herb productivity is more sensitive to soil moisture than the others. Moreover, multivariate regression analyses show that the primary climatic factors and their attributions to variations in soil moisture differ among the stations, indicating the interaction between climate and soil moisture is very complex. Our study highlights the interspecific difference in the soil moisture dependence of grassland productivity and provides guidance to climate change impact assessments in grassland ecosystems.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.172553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.172553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 France, France, France, United Kingdom, Austria, Japan, Netherlands, France, Canada, France, Germany, France, Spain, France, Switzerland, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, Norway, FinlandPublisher:Elsevier BV Funded by:RCN | Terrestrial ecosystem-cli..., RCN | The vanishing white: mana..., EC | CHARTERRCN| Terrestrial ecosystem-climate interactions of our EMERALD planet ,RCN| The vanishing white: management of stressors causing reduction of pale vegetation surfaces in the Arctic and the Qinghai-Tibetan Plateau ,EC| CHARTERErlandsson, Rasmus; Bjerke, Jarle W.; Finne, Eirik A.; Myneni, Ranga B.; Piao, Shilong; Wang, Xuhui; Virtanen, Tarmo; Räsänen, Aleksi; Kumpula, Timo; Kolari, Tiina H.M.; Tahvanainen, Teemu; Tømmervik; Hans;handle: 10852/95023 , 10138/350040 , 11250/3011572
Bien que généralement peu pris en compte dans les études sur la végétation, les lichens terricoles sont des contributeurs majeurs au cycle global du carbone et de l'azote, à l'albédo, à la biodiversité et à la biomasse dans de nombreux écosystèmes des hautes latitudes. Les changements dans la biomasse des lichens pâles formant des tapis ont le potentiel d'affecter la végétation, la faune, le climat et les activités humaines, y compris l'élevage du renne. Les lichens ont une signature spectrale complexe et les lichens terricoles ont une hauteur de croissance limitée, poussant souvent en mélanges avec une végétation plus haute. Cela a, jusqu'à présent, empêché le développement de techniques de télédétection pour évaluer avec précision la biomasse des lichens, qui serait un outil puissant dans la recherche écosystémique et écologique et la gestion des pâturages. Nous présentons un modèle de télédétection basé sur Landsat développé à l'aide de réseaux de neurones profonds, formé avec 8914 enregistrements de terrain du volume de lichen recueilli pendant >20 ans. Contrairement aux méthodes d'apprentissage automatique et de régression proposées précédemment pour les lichens, notre modèle a exploité la capacité des réseaux de neurones à gérer des entrées à résolution spatiale mixte. Nous avons formé des modèles candidats en utilisant l'entrée de pixels Landsat 1 × 1 (30 × 30 m) et 3 × 3 basés sur 7 bandes réfléchissantes et 3 indices, combinés à un modèle d'élévation numérique de résolution spatiale de 10 m. Nous avons normalisé les données d'altitude localement pour chaque placette afin de supprimer la variation spécifique à la région, tout en maintenant une variation locale informative de la topographie. Le modèle final a prédit le volume de lichen dans un ensemble d'évaluation (n = 159) atteignant un R2 de 0,57. Le NDVI et l'élévation étaient les prédicteurs les plus importants, suivis de la bande verte. Même avec une densité de couverture forestière modérée, le modèle était efficace, offrant une amélioration considérable par rapport aux méthodes antérieures basées sur la réflectance spécifique. Le modèle a été en principe formé sur des données de Scandinavie, mais lorsqu'il est appliqué à des sites en Amérique du Nord et en Russie, les prédictions du modèle correspondent bien à nos interprétations visuelles de l'abondance des lichens. Nous avons également quantifié avec précision un changement historique récent (35 ans) dans l'abondance des lichens dans le nord de la Norvège. Cette nouvelle méthode permet d'autres études spatiales et temporelles de la variation et des changements dans la biomasse des lichens liés à de multiples questions de recherche ainsi qu'à la gestion des pâturages et aux services écosystémiques économiques et culturels. Combiné à des informations sur les changements dans les facteurs tels que le climat, l'utilisation et la gestion des terres et la pollution de l'air, notre modèle peut être utilisé pour fournir des estimations précises des changements écosystémiques et pour améliorer les modèles végétation-climat en incluant les lichens pâles. Aunque generalmente se les presta poca atención en los estudios de vegetación, los líquenes terrestres (terrícolas) son los principales contribuyentes al ciclo general del carbono y el nitrógeno, el albedo, la biodiversidad y la biomasa en muchos ecosistemas de latitudes altas. Los cambios en la biomasa de los líquenes pálidos formadores de esteras tienen el potencial de afectar la vegetación, la fauna, el clima y las actividades humanas, incluida la cría de renos. Los líquenes tienen una firma espectral compleja y los líquenes terrícolas tienen una altura de crecimiento limitada, a menudo creciendo en mezclas con vegetación más alta. Hasta ahora, esto ha impedido el desarrollo de técnicas de teledetección para evaluar con precisión la biomasa de líquenes, que sería una herramienta poderosa en la investigación ecológica y de ecosistemas y la gestión de pastizales. Presentamos un modelo de teledetección basado en Landsat desarrollado utilizando redes neuronales profundas, entrenado con 8914 registros de campo de volumen de líquenes recopilados durante >20 años. En contraste con los métodos de aprendizaje automático y regresión propuestos anteriormente para líquenes, nuestro modelo explotó la capacidad de las redes neuronales para manejar la entrada de resolución espacial mixta. Capacitamos modelos candidatos utilizando la entrada de 1 × 1 (30 × 30 m) y 3 × 3 píxeles Landsat basados en 7 bandas reflectantes y 3 índices, combinados con un modelo de elevación digital de resolución espacial de 10 m. Normalizamos los datos de elevación localmente para cada parcela para eliminar la variación específica de la región, manteniendo al mismo tiempo la variación local informativa en la topografía. El modelo final predijo el volumen de liquen en un conjunto de evaluación (n = 159) alcanzando un R2 de 0.57. El NDVI y la elevación fueron los predictores más importantes, seguidos de la banda verde. Incluso con una densidad de cobertura arbórea moderada, el modelo fue eficiente, ofreciendo una mejora considerable en comparación con los métodos anteriores basados en la reflectancia específica. En principio, el modelo se entrenó con datos de Escandinavia, pero cuando se aplicó a sitios en América del Norte y Rusia, las predicciones del modelo se correspondieron bien con nuestras interpretaciones visuales de la abundancia de líquenes. También cuantificamos con precisión un cambio histórico reciente (35 años) en la abundancia de líquenes en el norte de Noruega. Este nuevo método permite realizar más estudios espaciales y temporales de la variación y los cambios en la biomasa de líquenes relacionados con múltiples preguntas de investigación, así como con la gestión de pastizales y los servicios ecosistémicos económicos y culturales. Combinado con información sobre los cambios en los factores impulsores, como el clima, el uso y la gestión de la tierra y la contaminación del aire, nuestro modelo se puede utilizar para proporcionar estimaciones precisas de los cambios en los ecosistemas y para mejorar los modelos de clima y vegetación mediante la inclusión de líquenes pálidos. Although generally given little attention in vegetation studies, ground-dwelling (terricolous) lichens are major contributors to overall carbon and nitrogen cycling, albedo, biodiversity and biomass in many high-latitude ecosystems. Changes in biomass of mat-forming pale lichens have the potential to affect vegetation, fauna, climate and human activities including reindeer husbandry. Lichens have a complex spectral signature and terricolous lichens have limited growth height, often growing in mixtures with taller vegetation. This has, so far, prevented the development of remote sensing techniques to accurately assess lichen biomass, which would be a powerful tool in ecosystem and ecological research and rangeland management. We present a Landsat based remote sensing model developed using deep neural networks, trained with 8914 field records of lichen volume collected for >20 years. In contrast to earlier proposed machine learning and regression methods for lichens, our model exploited the ability of neural networks to handle mixed spatial resolution input. We trained candidate models using input of 1 × 1 (30 × 30 m) and 3 × 3 Landsat pixels based on 7 reflective bands and 3 indices, combined with a 10 m spatial resolution digital elevation model. We normalised elevation data locally for each plot to remove the region-specific variation, while maintaining informative local variation in topography. The final model predicted lichen volume in an evaluation set (n = 159) reaching an R2 of 0.57. NDVI and elevation were the most important predictors, followed by the green band. Even with moderate tree cover density, the model was efficient, offering a considerable improvement compared to earlier methods based on specific reflectance. The model was in principle trained on data from Scandinavia, but when applied to sites in North America and Russia, the predictions of the model corresponded well with our visual interpretations of lichen abundance. We also accurately quantified a recent historic (35 years) change in lichen abundance in northern Norway. This new method enables further spatial and temporal studies of variation and changes in lichen biomass related to multiple research questions as well as rangeland management and economic and cultural ecosystem services. Combined with information on changes in drivers such as climate, land use and management, and air pollution, our model can be used to provide accurate estimates of ecosystem changes and to improve vegetation-climate models by including pale lichens. على الرغم من إيلاء القليل من الاهتمام بشكل عام في دراسات الغطاء النباتي، إلا أن الأشنات التي تعيش على الأرض (تيريولوس) هي المساهم الرئيسي في دورة الكربون والنيتروجين بشكل عام، والبياض، والتنوع البيولوجي والكتلة الحيوية في العديد من النظم الإيكولوجية ذات خطوط العرض العالية. يمكن أن تؤثر التغيرات في الكتلة الحيوية للأشنة الشاحبة المكونة للحصيرة على الغطاء النباتي والحيواني والمناخ والأنشطة البشرية بما في ذلك تربية الرنة. تتمتع الأشنة بتوقيع طيفي معقد والأشنة التريكولية لها ارتفاع نمو محدود، وغالبًا ما تنمو في مخاليط ذات نباتات أطول. وقد حال هذا، حتى الآن، دون تطوير تقنيات الاستشعار عن بعد لتقييم الكتلة الحيوية للأشنة بدقة، والتي ستكون أداة قوية في مجال النظم الإيكولوجية والبحوث الإيكولوجية وإدارة المراعي. نقدم نموذج استشعار عن بعد قائم على لاندسات تم تطويره باستخدام شبكات عصبية عميقة، تم تدريبه على 8914 سجلًا ميدانيًا لحجم الأشنة تم جمعها لأكثر من 20 عامًا. على النقيض من طرق التعلم الآلي والانحدار المقترحة سابقًا للأشنات، استغل نموذجنا قدرة الشبكات العصبية على التعامل مع مدخلات الدقة المكانية المختلطة. قمنا بتدريب النماذج المرشحة باستخدام مدخلات 1 × 1 (30 × 30 م) و 3 × 3 بكسلات لاندسات بناءً على 7 نطاقات عاكسة و 3 مؤشرات، جنبًا إلى جنب مع نموذج الارتفاع الرقمي ذي الدقة المكانية 10 أمتار. قمنا بتطبيع بيانات الارتفاع محليًا لكل مخطط لإزالة التباين الخاص بالمنطقة، مع الحفاظ على التباين المحلي الغني بالمعلومات في التضاريس. تنبأ النموذج النهائي بحجم الأشنة في مجموعة التقييم (العدد = 159) ليصل إلى R2 0.57. كان مؤشر NDVI والارتفاع أهم المتنبئين، يليهما الشريط الأخضر. حتى مع كثافة الغطاء الشجري المعتدلة، كان النموذج فعالاً، حيث قدم تحسناً كبيراً مقارنة بالطرق السابقة بناءً على انعكاس محدد. تم تدريب النموذج من حيث المبدأ على البيانات من الدول الاسكندنافية، ولكن عند تطبيقه على مواقع في أمريكا الشمالية وروسيا، تتوافق تنبؤات النموذج بشكل جيد مع تفسيراتنا البصرية لوفرة الأشنة. كما حددنا بدقة التغير التاريخي الأخير (35 عامًا) في وفرة الأشنة في شمال النرويج. تتيح هذه الطريقة الجديدة إجراء المزيد من الدراسات المكانية والزمنية للتغيرات والتغيرات في الكتلة الحيوية للأشنيات المتعلقة بمسائل بحثية متعددة بالإضافة إلى إدارة المراعي وخدمات النظم الإيكولوجية الاقتصادية والثقافية. إلى جانب المعلومات المتعلقة بالتغيرات في الدوافع مثل المناخ واستخدام الأراضي وإدارتها وتلوث الهواء، يمكن استخدام نموذجنا لتوفير تقديرات دقيقة لتغيرات النظام البيئي وتحسين نماذج الغطاء النباتي والمناخ من خلال تضمين الأشنات الشاحبة.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/95023Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRemote Sensing of EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/95023Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRemote Sensing of EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FrancePublisher:IOP Publishing Xiangtao Xu; Philippe Ciais; Xuhui Wang; Anping Chen; Ranga B. Myneni; Shilong Piao; Shilong Piao;Les événements climatiques extrêmes tels que les sécheresses, les inondations, les vagues de chaleur et les tempêtes de verglas ont un impact sur les écosystèmes ainsi que sur les sociétés humaines. On s'inquiète beaucoup de la façon dont les écosystèmes terrestres réagissent aux événements climatiques extrêmes dans le contexte du réchauffement climatique. Dans cette étude, nous avons utilisé des données de verdure de la végétation dérivées de satellites (Normalized Difference Vegetation Index ; NDVI), des données de station météorologique in situ (température et précipitations) et l'indice de gravité de la sécheresse de Palmer (PDSI) pour analyser le changement spatio-temporel de la zone connaissant des anomalies de verdure de la végétation et des événements climatiques extrêmes en Chine de 1982 à 2009. À l'échelle nationale, nous avons constaté que la Chine a connu une tendance à la hausse des vagues de chaleur et des épisodes de sécheresse au cours de la période d'étude. La fraction moyenne de stations climatiques avec des épisodes de sécheresse (définie par la saison de croissance PDSI <− 2) détectée est passée de 8% dans les années 1980 à près de 20% dans les années 2000, à un taux de 0,6% an−1 (R2 = 0,61, P < 0,001). En revanche, la zone présentant des anomalies négatives de la verdure de la végétation a diminué au rythme de 0,9% an−1 de 1982 à 2009 (R2 = 0,29, P = 0,003), bien que cette tendance ait stagné ou s'est inversée au cours des années 2000, en particulier dans le nord de la Chine. La diminution de la croissance de la végétation au cours de la dernière décennie dans le nord de la Chine s'est accompagnée d'une augmentation des épisodes de sécheresse extrême dans les années 2000. Dans le sud de la Chine, bien que les données sur les précipitations et les PDSI suggèrent une plus grande superficie subissant des épisodes de sécheresse au cours des années 2000 que dans les années 1980, la superficie montrant une verdure négative de la végétation a diminué de manière constante pendant toute la période d'étude. Los eventos climáticos extremos como sequías, inundaciones, olas de calor y tormentas de hielo afectan a los ecosistemas y a las sociedades humanas. Existe una gran preocupación sobre cómo los ecosistemas terrestres responden a los eventos climáticos extremos en el contexto del calentamiento global. En este estudio, utilizamos datos de verdor de vegetación derivados de satélites (Índice de Vegetación de Diferencia Normalizada; NDVI), datos de estaciones meteorológicas in situ (temperatura y precipitación) y el Índice de Severidad de Sequía de Palmer (PDSI) para analizar el cambio espacio-temporal del área que experimenta anomalías de verdor de vegetación y eventos climáticos extremos en China de 1982 a 2009. A escala nacional, encontramos que China experimentó una tendencia creciente en olas de calor y eventos de sequía durante el período de estudio. La fracción promedio de estaciones climáticas con eventos de sequía (definida por la PDSI de la temporada de crecimiento <-2) detectada aumentó del 8% en la década de 1980 a casi el 20% en la década de 2000, a una tasa del 0,6% año-1 (R2 = 0,61, P < 0,001). Por el contrario, el área que muestra anomalías negativas de verdor de la vegetación disminuyó a una tasa de 0.9% año−1 de 1982 a 2009 (R2 = 0.29, P = 0.003), aunque esta tendencia se estancó o revirtió durante la década de 2000, particularmente en el norte de China. La disminución del crecimiento de la vegetación durante la última década en el norte de China fue acompañada por el aumento de los eventos de sequía extrema en la década de 2000. En el sur de China, aunque los datos de precipitación y PDSI sugieren una mayor área que experimentó eventos de sequía durante la década de 2000 que en la década de 1980, el área que mostró un verdor de vegetación negativo disminuyó consistentemente durante todo el período de estudio. Extreme climatic events like droughts, floods, heat waves and ice storms impact ecosystems as well as human societies. There is wide concern about how terrestrial ecosystems respond to extreme climatic events in the context of global warming. In this study, we used satellite-derived vegetation greenness data (Normalized Difference Vegetation Index; NDVI), in situ weather station data (temperature and precipitation) and the Palmer Drought Severity Index (PDSI) to analyze the spatio-temporal change of the area experiencing vegetation greenness anomalies and extreme climatic events in China from 1982 to 2009. At the national scale, we found that China experienced an increasing trend in heat waves and drought events during the study period. The average fraction of climate stations with drought events (defined by growing season PDSI <− 2) detected increased from 8% in the 1980s, to nearly 20% in the 2000s, at a rate of 0.6% yr−1 (R2 = 0.61, P < 0.001). In contrast, the area showing negative anomalies of vegetation greenness decreased at the rate of 0.9% yr−1 from 1982 to 2009 (R2 = 0.29, P = 0.003), although this trend stalled or reversed during the 2000s, particularly in northern China. The decrease in vegetation growth during the last decade over northern China was accompanied by the increase in extreme drought events in the 2000s. In southern China, although both precipitation and PDSI data suggest a greater area experiencing drought events during the 2000s than in the 1980s, the area showing negative vegetation greenness decreased consistently during the whole study period. تؤثر الأحداث المناخية المتطرفة مثل الجفاف والفيضانات وموجات الحر والعواصف الجليدية على النظم الإيكولوجية وكذلك المجتمعات البشرية. هناك قلق واسع النطاق بشأن كيفية استجابة النظم الإيكولوجية الأرضية للظواهر المناخية المتطرفة في سياق الاحترار العالمي. في هذه الدراسة، استخدمنا بيانات خضرة الغطاء النباتي المستمدة من الأقمار الصناعية (مؤشر الاختلاف الطبيعي للغطاء النباتي ؛ NDVI)، وبيانات محطة الطقس في الموقع (درجة الحرارة وهطول الأمطار) ومؤشر بالمر لشدة الجفاف (PDSI) لتحليل التغير المكاني والزماني للمنطقة التي تعاني من شذوذ خضرة الغطاء النباتي والظواهر المناخية المتطرفة في الصين من 1982 إلى 2009. على المستوى الوطني، وجدنا أن الصين شهدت اتجاهًا متزايدًا في موجات الحرارة وأحداث الجفاف خلال فترة الدراسة. ارتفع متوسط نسبة المحطات المناخية ذات أحداث الجفاف (المحددة بموسم النمو PDSI <-2) المكتشفة من 8 ٪ في الثمانينيات، إلى ما يقرب من 20 ٪ في العقد الأول من القرن الحادي والعشرين، بمعدل 0.6 ٪ سنويًا-1 (R2 = 0.61، P < 0.001). على النقيض من ذلك، انخفضت المنطقة التي تظهر شذوذًا سلبيًا في خضرة الغطاء النباتي بمعدل 0.9 ٪ سنويًا-1 من عام 1982 إلى عام 2009 (R2 = 0.29، P = 0.003)، على الرغم من أن هذا الاتجاه توقف أو انعكس خلال العقد الأول من القرن الحادي والعشرين، لا سيما في شمال الصين. كان الانخفاض في نمو الغطاء النباتي خلال العقد الماضي في شمال الصين مصحوبًا بزيادة في أحداث الجفاف الشديد في العقد الأول من القرن الحادي والعشرين. في جنوب الصين، على الرغم من أن بيانات كل من هطول الأمطار و PDSI تشير إلى منطقة أكبر تعاني من أحداث الجفاف خلال العقد الأول من القرن الحادي والعشرين مقارنة بالثمانينيات، إلا أن المنطقة التي تظهر خضرة سلبية للغطاء النباتي انخفضت باستمرار خلال فترة الدراسة بأكملها.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-02929509Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-02929509Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/3/035701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-02929509Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-02929509Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/3/035701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2017 FrancePublisher:HAL CCSD Authors: Wang, Xuhui;Les terres cultivées représentent un cinquième de la surface émergée de la Terre. Elles fournissent des nutriments à l'homme, modifient le cycle biogéochimique et l'équilibre énergétique de la terre. L’évolution des terres cultivées dans le contexte du changement climatique et avec une intensification des actions anthropiques constitue un enjeu important pour la sécurité alimentaire et les exigences environnementales du développement durable. Le manuscrit de thèse s’inscrit dans cette thématique en exploitant les données de différentes sources et la modélisation numérique. Les données utilisées sont : les statistiques de rendements, les observations agro-météorologiques à long terme, les résultats des sites d’expérimentation avec du réchauffement, les jeux de données globales issus des processus de fusion ou d’assimilation, les données climatiques historiques et de projection future. La modélisation fait appel aux modèles statistiques et aux modèles de processus. Le manuscrit est composé d’une série de travaux de détection et d'attribution. Ils explorent la phénologie, le rendement et leurs réponses aux changements climatiques et aux pratiques de gestion. Ils sont soit sur l'échelle régionale soit sur l’échelle globale, en fonction de la disponibilité des données et de leur pertinence. Le chapitre 2 décrit la construction et l’utilisation d'un modèle statistique avec des données provinciales de rendement au Nord-est de Chine et des données climatiques historiques. Les résultats montrent un effet asymétrique de la température diurne sur le rendement du maïs. Le rendement du maïs augmente de 10.0±7.7% en réponse à une augmentation moyenne de 1oC pendant la saison de croissance quand il s’agit de la température minimale de nuit (Tmin), mais le rendement diminue de 13,4±7,1% quand il s’agit de la température maximale de jour (Tmax). Il y a une grande disparité spatiale pour la réponse à Tmax, ce qui peut s'expliquer partiellement par le fort gradient spatial de la température pendant la saison de croissance (R = -0,67, P <0,01). La réponse du rendement aux précipitations dépend aussi des conditions d'humidité. Malgré la détection d'impacts significatifs du changement climatique sur le rendement, une part importante de ses variations n’est pas expliquée par les variables climatiques, ce qui souligne le besoin urgent de pouvoir attribuer proprement les variations de rendement au changement climatique et aux pratiques de gestion. Le chapitre 3 présente le développement d’un algorithme d'optimisation basé sur la théorie de Bayes pour optimiser les paramètres importants contrôlant la phénologie dans le modèle ORCHIDEE-crop. L’utilisation du modèle optimisé permet de distinguer les effets de la gestion de ceux du changement climatique sur la période de croissance du riz (LGP). Les résultats du modèle optimisé ORCHIDEE-crop suggèrent que le changement climatique affecte la LGP différemment en fonction des types du riz. Le facteur climatique a fait raccourcir la LGP du riz précoce (-2,0±5,0 jour / décennie), allonger la LGP du riz tardif (1,1±5,4 jour / décennie). Il a peu d'effet sur la LGP du riz unique (-0,4±5,4 jour / décennie). Les résultats du modèle ORCHIDEE-crop montrent aussi que les changements intervenus dans la date de transplantation ont provoqué un changement généralisé de la LGP, mais seulement pour les sites de riz précoce. Ceci compense à la hauteur de 65% le raccourcissement de la LGP provoquée par le changement climatique. Le facteur dominant du changement LGP varie suivant les trois types de riz. La gestion est le principal facteur pour les riz précoce et unique. Ce chapitre démontre aussi qu'un modèle optimisé peut avoir une excellente capacité à représenter des variations régionales complexes de LGP. Croplands accounts for one-fifth of global land surface, providing calories for human beings and altering the global biogeochemical cycle and land surface energy balance. The response of croplands to climate change and intensifying human managements is of critical importance to food security and sustainability of the environment. The present manuscript of thesis utilizes various types of data sources (yield statistics, long-term agrometeorological observations, field warming experiments, data-driven global datasets, gridded historical climate dataset and projected climate change) and also modelling approaches (statistical model vs. process model). It presents a series of detection and attribution studies exploring how crop phenology and crop yield respond to climate change and some management practices at regional and global scales, according to data availability. In Chapter 2, a statistical model is constructed with prefecture-level yield statistics and historical climate observations over Northeast China. There are asymmetrical impacts of daytime and nighttime temperatures on maize yield. Maize yield increased by 10.0±7.7% in response to a 1 oC increase of daily minimum temperature (Tmin) averaged in the growing season, but decreased by 13.4±7.1% in response to a 1 oC warming of daily maximum temperature (Tmax). There is a large spatial variation in the yield response to Tmax, which can be partly explained by the spatial gradient of growing season mean temperature (R=-0.67, P95% probability that warmer temperatures would reduce yields for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and soybean (-10.6±5.8% K-1). For wheat, ST was less negative and only 89% likely to be negative (-2.9±2.3% K-1). The field-observation based constraints from the results of the warming experiments reduced uncertainties associated with modeled ST by 12-54% for the four crops.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationDoctoral thesis . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::c1205ef47009e838ab66f6b4845800cf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationDoctoral thesis . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::c1205ef47009e838ab66f6b4845800cf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Austria, United KingdomPublisher:Springer Science and Business Media LLC Mingzhu He; Shilong Piao; Chris Huntingford; Hao Xu; Xuhui Wang; Ana Bastos; Jiangpeng Cui; Thomas Gasser;AbstractGlobal warming is increasing due to the ongoing rise in atmospheric greenhouse gases, and has the potential to threaten humans and ecosystems severely. Carbon dioxide, the primary rising greenhouse gas, also enhances vegetation carbon uptake, partially offsetting emissions. The vegetation physiological response to rising carbon dioxide, through partial stomatal closure and leaf area increase, can also amplify global warming, yet this is rarely accounted for in climate mitigation assessments. Using six Earth System Models, we show that vegetation physiological response consistently amplifies warming as carbon dioxide rises, primarily due to stomatal closure-induced evapotranspiration reductions. Importantly, such warming partially offsets cooling through enhanced carbon storage. We also find a stronger warming with higher leaf area and less warming with lower leaf area. Our study shows that the vegetation physiological response to elevated carbon dioxide influences local climate, which may reduce the extent of expected climate benefits offered by terrestrial ecosystems.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00489-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00489-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 FrancePublisher:Springer Science and Business Media LLC Mengtian Huang; Yao Huang; Philippe Ciais; Zhenzhong Zeng; Xuhui Wang; Shilong Piao; Shilong Piao; Shushi Peng; Chuang Zhao;pmid: 27853151
pmc: PMC5118553
AbstractWheat growth is sensitive to temperature, but the effect of future warming on yield is uncertain. Here, focusing on China, we compiled 46 observations of the sensitivity of wheat yield to temperature change (SY,T, yield change per °C) from field warming experiments and 102 SY,T estimates from local process-based and statistical models. The average SY,T from field warming experiments, local process-based models and statistical models is −0.7±7.8(±s.d.)% per °C, −5.7±6.5% per °C and 0.4±4.4% per °C, respectively. Moreover, SY,T is different across regions and warming experiments indicate positive SY,T values in regions where growing-season mean temperature is low, and water supply is not limiting, and negative values elsewhere. Gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project appear to capture the spatial pattern of SY,T deduced from warming observations. These results from local manipulative experiments could be used to improve crop models in the future.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-02922380Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-02922380Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms13530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-02922380Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-02922380Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms13530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Wiley Authors: Wang, Xuhui; Ciais, Philippe; Wang, Yilong; Zhu, Dan;doi: 10.1111/gcb.14335
pmid: 29851198
AbstractInterannual variations of photosynthesis in tropical seasonally dry vegetation are one of the dominant drivers to interannual variations of atmosphericCO2growth rate. Yet, the seasonal differences in the response of photosynthesis to climate variations in these ecosystems remain poorly understood. Here using Normalized Difference Vegetation Index (NDVI), we explored the response of photosynthesis of seasonally dry tropical vegetation to climatic variations in the dry and the wet seasons during the past three decades. We found significant (p < 0.01) differences between dry and wet seasons in the interannual response of photosynthesis to temperature (γint) and to precipitation (δint).γintis ~1% °C−1more negative andδintis ~8% 100 mm−1more positive in the dry season than in the wet season. Further analyses show that the seasonal difference inγintcan be explained by background moisture and temperature conditions. Positiveγintoccurred in wet season where mean temperature is lower than 27°C and precipitation is at least 60 mm larger than potential evapotranspiration. Two widely used Gross Primary Productivity (GPP) estimates (empirical modeling by machine‐learning algorithm applied to flux tower measurements, and nine process‐based carbon cycle models) were examined for theGPP–climate relationship over wet and dry seasons. TheGPPderived from empirical modeling can partly reproduce the divergence ofγint, while most process models cannot. The overestimate by process models on negative impacts by warmer temperature during the wet season highlights the shortcomings of current carbon cycle models in representing interactive impacts of temperature and moisture on photosynthesis. Improving representations on soil water uptake, leaf temperature, nitrogen cycling, and soil moisture may help improve modeling skills in reproducing seasonal differences of photosynthesis–climate relationship and thus the projection for impacts of climate change on tropical carbon cycle.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint 2020 United Kingdom, France, Austria, Netherlands, France, Belgium, FrancePublisher:Copernicus GmbH Funded by:EC | VERIFYEC| VERIFYFrédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2022Geoscientific Model DevelopmentArticle . 2022License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsGeoscientific Model DevelopmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2022Geoscientific Model DevelopmentArticle . 2022License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsGeoscientific Model DevelopmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, France, Belgium, United KingdomPublisher:Copernicus GmbH A. Bastos; P. Ciais; F. Chevallier; C. Rödenbeck; A. P. Ballantyne; A. P. Ballantyne; F. Maignan; Y. Yin; M. Fernández-Martínez; P. Friedlingstein; J. Peñuelas; J. Peñuelas; S. L. Piao; S. Sitch; W. K. Smith; X. Wang; Z. Zhu; V. Haverd; E. Kato; A. K. Jain; S. Lienert; D. Lombardozzi; J. E. M. S. Nabel; P. Peylin; B. Poulter; D. Zhu;Abstract. Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 exchange in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric inversions (consistent with atmospheric records) and from and 11 state-of-the-art land-surface models (LSMs) to evaluate the relative importance of individual contributors to trends and drivers of the SCA of CO2-fluxes for 1980−2015. The LSMs generally reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute SCA increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of CO2 fertilisation (positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor to the increase in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA trends, which suggests SCA could help to constrain model turnover times.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Shuai, An; Xiaoqiu, Chen; Fangjun, Li; Xuhui, Wang; Miaogen, Shen; Xiangzhong, Luo; Shilong, Ren; Hongfang, Zhao; Yan, Li; Lin, Xu;pmid: 38663615
As a sensitive indicator of climate change and a key variable in ecosystem surface-atmosphere interaction, vegetation phenology, and the growing season length, as well as climatic factors (i.e., temperature, precipitation, and sunshine duration) are widely recognized as key factors influencing vegetation productivity. Recent studies have highlighted the importance of soil moisture in regulating grassland productivity. However, the relative importance of phenology, climatic factors, and soil moisture to plant species-level productivity across China's grasslands remains poorly understood. Here, we use nearly four decades (1981 to 2018) of in situ species-level observations from 17 stations distributed across grasslands in China to examine the key mechanisms that control grassland productivity. The results reveal that soil moisture is the strongest determinant of the interannual variability in grassland productivity. In contrast, the spring/autumn phenology, the length of vegetation growing season, and climate factors have relatively minor impacts. Generally, annual aboveground biomass increases by 3.9 to 25.3 g∙m2 (dry weight) with a 1 % increase in growing season mean soil moisture across the stations. Specifically, the sensitivity of productivity to moisture in wetter and colder environments (e.g., alpine meadows) is significantly higher than that in drier and warmer environments (e.g., temperate desert steppes). In contrast, the sensitivity to the precipitation of the latter is greater than the former. The effect of soil moisture is the most pronounced during summer. Dominant herb productivity is more sensitive to soil moisture than the others. Moreover, multivariate regression analyses show that the primary climatic factors and their attributions to variations in soil moisture differ among the stations, indicating the interaction between climate and soil moisture is very complex. Our study highlights the interspecific difference in the soil moisture dependence of grassland productivity and provides guidance to climate change impact assessments in grassland ecosystems.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.172553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.172553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 France, France, France, United Kingdom, Austria, Japan, Netherlands, France, Canada, France, Germany, France, Spain, France, Switzerland, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, Norway, FinlandPublisher:Elsevier BV Funded by:RCN | Terrestrial ecosystem-cli..., RCN | The vanishing white: mana..., EC | CHARTERRCN| Terrestrial ecosystem-climate interactions of our EMERALD planet ,RCN| The vanishing white: management of stressors causing reduction of pale vegetation surfaces in the Arctic and the Qinghai-Tibetan Plateau ,EC| CHARTERErlandsson, Rasmus; Bjerke, Jarle W.; Finne, Eirik A.; Myneni, Ranga B.; Piao, Shilong; Wang, Xuhui; Virtanen, Tarmo; Räsänen, Aleksi; Kumpula, Timo; Kolari, Tiina H.M.; Tahvanainen, Teemu; Tømmervik; Hans;handle: 10852/95023 , 10138/350040 , 11250/3011572
Bien que généralement peu pris en compte dans les études sur la végétation, les lichens terricoles sont des contributeurs majeurs au cycle global du carbone et de l'azote, à l'albédo, à la biodiversité et à la biomasse dans de nombreux écosystèmes des hautes latitudes. Les changements dans la biomasse des lichens pâles formant des tapis ont le potentiel d'affecter la végétation, la faune, le climat et les activités humaines, y compris l'élevage du renne. Les lichens ont une signature spectrale complexe et les lichens terricoles ont une hauteur de croissance limitée, poussant souvent en mélanges avec une végétation plus haute. Cela a, jusqu'à présent, empêché le développement de techniques de télédétection pour évaluer avec précision la biomasse des lichens, qui serait un outil puissant dans la recherche écosystémique et écologique et la gestion des pâturages. Nous présentons un modèle de télédétection basé sur Landsat développé à l'aide de réseaux de neurones profonds, formé avec 8914 enregistrements de terrain du volume de lichen recueilli pendant >20 ans. Contrairement aux méthodes d'apprentissage automatique et de régression proposées précédemment pour les lichens, notre modèle a exploité la capacité des réseaux de neurones à gérer des entrées à résolution spatiale mixte. Nous avons formé des modèles candidats en utilisant l'entrée de pixels Landsat 1 × 1 (30 × 30 m) et 3 × 3 basés sur 7 bandes réfléchissantes et 3 indices, combinés à un modèle d'élévation numérique de résolution spatiale de 10 m. Nous avons normalisé les données d'altitude localement pour chaque placette afin de supprimer la variation spécifique à la région, tout en maintenant une variation locale informative de la topographie. Le modèle final a prédit le volume de lichen dans un ensemble d'évaluation (n = 159) atteignant un R2 de 0,57. Le NDVI et l'élévation étaient les prédicteurs les plus importants, suivis de la bande verte. Même avec une densité de couverture forestière modérée, le modèle était efficace, offrant une amélioration considérable par rapport aux méthodes antérieures basées sur la réflectance spécifique. Le modèle a été en principe formé sur des données de Scandinavie, mais lorsqu'il est appliqué à des sites en Amérique du Nord et en Russie, les prédictions du modèle correspondent bien à nos interprétations visuelles de l'abondance des lichens. Nous avons également quantifié avec précision un changement historique récent (35 ans) dans l'abondance des lichens dans le nord de la Norvège. Cette nouvelle méthode permet d'autres études spatiales et temporelles de la variation et des changements dans la biomasse des lichens liés à de multiples questions de recherche ainsi qu'à la gestion des pâturages et aux services écosystémiques économiques et culturels. Combiné à des informations sur les changements dans les facteurs tels que le climat, l'utilisation et la gestion des terres et la pollution de l'air, notre modèle peut être utilisé pour fournir des estimations précises des changements écosystémiques et pour améliorer les modèles végétation-climat en incluant les lichens pâles. Aunque generalmente se les presta poca atención en los estudios de vegetación, los líquenes terrestres (terrícolas) son los principales contribuyentes al ciclo general del carbono y el nitrógeno, el albedo, la biodiversidad y la biomasa en muchos ecosistemas de latitudes altas. Los cambios en la biomasa de los líquenes pálidos formadores de esteras tienen el potencial de afectar la vegetación, la fauna, el clima y las actividades humanas, incluida la cría de renos. Los líquenes tienen una firma espectral compleja y los líquenes terrícolas tienen una altura de crecimiento limitada, a menudo creciendo en mezclas con vegetación más alta. Hasta ahora, esto ha impedido el desarrollo de técnicas de teledetección para evaluar con precisión la biomasa de líquenes, que sería una herramienta poderosa en la investigación ecológica y de ecosistemas y la gestión de pastizales. Presentamos un modelo de teledetección basado en Landsat desarrollado utilizando redes neuronales profundas, entrenado con 8914 registros de campo de volumen de líquenes recopilados durante >20 años. En contraste con los métodos de aprendizaje automático y regresión propuestos anteriormente para líquenes, nuestro modelo explotó la capacidad de las redes neuronales para manejar la entrada de resolución espacial mixta. Capacitamos modelos candidatos utilizando la entrada de 1 × 1 (30 × 30 m) y 3 × 3 píxeles Landsat basados en 7 bandas reflectantes y 3 índices, combinados con un modelo de elevación digital de resolución espacial de 10 m. Normalizamos los datos de elevación localmente para cada parcela para eliminar la variación específica de la región, manteniendo al mismo tiempo la variación local informativa en la topografía. El modelo final predijo el volumen de liquen en un conjunto de evaluación (n = 159) alcanzando un R2 de 0.57. El NDVI y la elevación fueron los predictores más importantes, seguidos de la banda verde. Incluso con una densidad de cobertura arbórea moderada, el modelo fue eficiente, ofreciendo una mejora considerable en comparación con los métodos anteriores basados en la reflectancia específica. En principio, el modelo se entrenó con datos de Escandinavia, pero cuando se aplicó a sitios en América del Norte y Rusia, las predicciones del modelo se correspondieron bien con nuestras interpretaciones visuales de la abundancia de líquenes. También cuantificamos con precisión un cambio histórico reciente (35 años) en la abundancia de líquenes en el norte de Noruega. Este nuevo método permite realizar más estudios espaciales y temporales de la variación y los cambios en la biomasa de líquenes relacionados con múltiples preguntas de investigación, así como con la gestión de pastizales y los servicios ecosistémicos económicos y culturales. Combinado con información sobre los cambios en los factores impulsores, como el clima, el uso y la gestión de la tierra y la contaminación del aire, nuestro modelo se puede utilizar para proporcionar estimaciones precisas de los cambios en los ecosistemas y para mejorar los modelos de clima y vegetación mediante la inclusión de líquenes pálidos. Although generally given little attention in vegetation studies, ground-dwelling (terricolous) lichens are major contributors to overall carbon and nitrogen cycling, albedo, biodiversity and biomass in many high-latitude ecosystems. Changes in biomass of mat-forming pale lichens have the potential to affect vegetation, fauna, climate and human activities including reindeer husbandry. Lichens have a complex spectral signature and terricolous lichens have limited growth height, often growing in mixtures with taller vegetation. This has, so far, prevented the development of remote sensing techniques to accurately assess lichen biomass, which would be a powerful tool in ecosystem and ecological research and rangeland management. We present a Landsat based remote sensing model developed using deep neural networks, trained with 8914 field records of lichen volume collected for >20 years. In contrast to earlier proposed machine learning and regression methods for lichens, our model exploited the ability of neural networks to handle mixed spatial resolution input. We trained candidate models using input of 1 × 1 (30 × 30 m) and 3 × 3 Landsat pixels based on 7 reflective bands and 3 indices, combined with a 10 m spatial resolution digital elevation model. We normalised elevation data locally for each plot to remove the region-specific variation, while maintaining informative local variation in topography. The final model predicted lichen volume in an evaluation set (n = 159) reaching an R2 of 0.57. NDVI and elevation were the most important predictors, followed by the green band. Even with moderate tree cover density, the model was efficient, offering a considerable improvement compared to earlier methods based on specific reflectance. The model was in principle trained on data from Scandinavia, but when applied to sites in North America and Russia, the predictions of the model corresponded well with our visual interpretations of lichen abundance. We also accurately quantified a recent historic (35 years) change in lichen abundance in northern Norway. This new method enables further spatial and temporal studies of variation and changes in lichen biomass related to multiple research questions as well as rangeland management and economic and cultural ecosystem services. Combined with information on changes in drivers such as climate, land use and management, and air pollution, our model can be used to provide accurate estimates of ecosystem changes and to improve vegetation-climate models by including pale lichens. على الرغم من إيلاء القليل من الاهتمام بشكل عام في دراسات الغطاء النباتي، إلا أن الأشنات التي تعيش على الأرض (تيريولوس) هي المساهم الرئيسي في دورة الكربون والنيتروجين بشكل عام، والبياض، والتنوع البيولوجي والكتلة الحيوية في العديد من النظم الإيكولوجية ذات خطوط العرض العالية. يمكن أن تؤثر التغيرات في الكتلة الحيوية للأشنة الشاحبة المكونة للحصيرة على الغطاء النباتي والحيواني والمناخ والأنشطة البشرية بما في ذلك تربية الرنة. تتمتع الأشنة بتوقيع طيفي معقد والأشنة التريكولية لها ارتفاع نمو محدود، وغالبًا ما تنمو في مخاليط ذات نباتات أطول. وقد حال هذا، حتى الآن، دون تطوير تقنيات الاستشعار عن بعد لتقييم الكتلة الحيوية للأشنة بدقة، والتي ستكون أداة قوية في مجال النظم الإيكولوجية والبحوث الإيكولوجية وإدارة المراعي. نقدم نموذج استشعار عن بعد قائم على لاندسات تم تطويره باستخدام شبكات عصبية عميقة، تم تدريبه على 8914 سجلًا ميدانيًا لحجم الأشنة تم جمعها لأكثر من 20 عامًا. على النقيض من طرق التعلم الآلي والانحدار المقترحة سابقًا للأشنات، استغل نموذجنا قدرة الشبكات العصبية على التعامل مع مدخلات الدقة المكانية المختلطة. قمنا بتدريب النماذج المرشحة باستخدام مدخلات 1 × 1 (30 × 30 م) و 3 × 3 بكسلات لاندسات بناءً على 7 نطاقات عاكسة و 3 مؤشرات، جنبًا إلى جنب مع نموذج الارتفاع الرقمي ذي الدقة المكانية 10 أمتار. قمنا بتطبيع بيانات الارتفاع محليًا لكل مخطط لإزالة التباين الخاص بالمنطقة، مع الحفاظ على التباين المحلي الغني بالمعلومات في التضاريس. تنبأ النموذج النهائي بحجم الأشنة في مجموعة التقييم (العدد = 159) ليصل إلى R2 0.57. كان مؤشر NDVI والارتفاع أهم المتنبئين، يليهما الشريط الأخضر. حتى مع كثافة الغطاء الشجري المعتدلة، كان النموذج فعالاً، حيث قدم تحسناً كبيراً مقارنة بالطرق السابقة بناءً على انعكاس محدد. تم تدريب النموذج من حيث المبدأ على البيانات من الدول الاسكندنافية، ولكن عند تطبيقه على مواقع في أمريكا الشمالية وروسيا، تتوافق تنبؤات النموذج بشكل جيد مع تفسيراتنا البصرية لوفرة الأشنة. كما حددنا بدقة التغير التاريخي الأخير (35 عامًا) في وفرة الأشنة في شمال النرويج. تتيح هذه الطريقة الجديدة إجراء المزيد من الدراسات المكانية والزمنية للتغيرات والتغيرات في الكتلة الحيوية للأشنيات المتعلقة بمسائل بحثية متعددة بالإضافة إلى إدارة المراعي وخدمات النظم الإيكولوجية الاقتصادية والثقافية. إلى جانب المعلومات المتعلقة بالتغيرات في الدوافع مثل المناخ واستخدام الأراضي وإدارتها وتلوث الهواء، يمكن استخدام نموذجنا لتوفير تقديرات دقيقة لتغيرات النظام البيئي وتحسين نماذج الغطاء النباتي والمناخ من خلال تضمين الأشنات الشاحبة.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/95023Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRemote Sensing of EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/95023Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRemote Sensing of EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FrancePublisher:IOP Publishing Xiangtao Xu; Philippe Ciais; Xuhui Wang; Anping Chen; Ranga B. Myneni; Shilong Piao; Shilong Piao;Les événements climatiques extrêmes tels que les sécheresses, les inondations, les vagues de chaleur et les tempêtes de verglas ont un impact sur les écosystèmes ainsi que sur les sociétés humaines. On s'inquiète beaucoup de la façon dont les écosystèmes terrestres réagissent aux événements climatiques extrêmes dans le contexte du réchauffement climatique. Dans cette étude, nous avons utilisé des données de verdure de la végétation dérivées de satellites (Normalized Difference Vegetation Index ; NDVI), des données de station météorologique in situ (température et précipitations) et l'indice de gravité de la sécheresse de Palmer (PDSI) pour analyser le changement spatio-temporel de la zone connaissant des anomalies de verdure de la végétation et des événements climatiques extrêmes en Chine de 1982 à 2009. À l'échelle nationale, nous avons constaté que la Chine a connu une tendance à la hausse des vagues de chaleur et des épisodes de sécheresse au cours de la période d'étude. La fraction moyenne de stations climatiques avec des épisodes de sécheresse (définie par la saison de croissance PDSI <− 2) détectée est passée de 8% dans les années 1980 à près de 20% dans les années 2000, à un taux de 0,6% an−1 (R2 = 0,61, P < 0,001). En revanche, la zone présentant des anomalies négatives de la verdure de la végétation a diminué au rythme de 0,9% an−1 de 1982 à 2009 (R2 = 0,29, P = 0,003), bien que cette tendance ait stagné ou s'est inversée au cours des années 2000, en particulier dans le nord de la Chine. La diminution de la croissance de la végétation au cours de la dernière décennie dans le nord de la Chine s'est accompagnée d'une augmentation des épisodes de sécheresse extrême dans les années 2000. Dans le sud de la Chine, bien que les données sur les précipitations et les PDSI suggèrent une plus grande superficie subissant des épisodes de sécheresse au cours des années 2000 que dans les années 1980, la superficie montrant une verdure négative de la végétation a diminué de manière constante pendant toute la période d'étude. Los eventos climáticos extremos como sequías, inundaciones, olas de calor y tormentas de hielo afectan a los ecosistemas y a las sociedades humanas. Existe una gran preocupación sobre cómo los ecosistemas terrestres responden a los eventos climáticos extremos en el contexto del calentamiento global. En este estudio, utilizamos datos de verdor de vegetación derivados de satélites (Índice de Vegetación de Diferencia Normalizada; NDVI), datos de estaciones meteorológicas in situ (temperatura y precipitación) y el Índice de Severidad de Sequía de Palmer (PDSI) para analizar el cambio espacio-temporal del área que experimenta anomalías de verdor de vegetación y eventos climáticos extremos en China de 1982 a 2009. A escala nacional, encontramos que China experimentó una tendencia creciente en olas de calor y eventos de sequía durante el período de estudio. La fracción promedio de estaciones climáticas con eventos de sequía (definida por la PDSI de la temporada de crecimiento <-2) detectada aumentó del 8% en la década de 1980 a casi el 20% en la década de 2000, a una tasa del 0,6% año-1 (R2 = 0,61, P < 0,001). Por el contrario, el área que muestra anomalías negativas de verdor de la vegetación disminuyó a una tasa de 0.9% año−1 de 1982 a 2009 (R2 = 0.29, P = 0.003), aunque esta tendencia se estancó o revirtió durante la década de 2000, particularmente en el norte de China. La disminución del crecimiento de la vegetación durante la última década en el norte de China fue acompañada por el aumento de los eventos de sequía extrema en la década de 2000. En el sur de China, aunque los datos de precipitación y PDSI sugieren una mayor área que experimentó eventos de sequía durante la década de 2000 que en la década de 1980, el área que mostró un verdor de vegetación negativo disminuyó consistentemente durante todo el período de estudio. Extreme climatic events like droughts, floods, heat waves and ice storms impact ecosystems as well as human societies. There is wide concern about how terrestrial ecosystems respond to extreme climatic events in the context of global warming. In this study, we used satellite-derived vegetation greenness data (Normalized Difference Vegetation Index; NDVI), in situ weather station data (temperature and precipitation) and the Palmer Drought Severity Index (PDSI) to analyze the spatio-temporal change of the area experiencing vegetation greenness anomalies and extreme climatic events in China from 1982 to 2009. At the national scale, we found that China experienced an increasing trend in heat waves and drought events during the study period. The average fraction of climate stations with drought events (defined by growing season PDSI <− 2) detected increased from 8% in the 1980s, to nearly 20% in the 2000s, at a rate of 0.6% yr−1 (R2 = 0.61, P < 0.001). In contrast, the area showing negative anomalies of vegetation greenness decreased at the rate of 0.9% yr−1 from 1982 to 2009 (R2 = 0.29, P = 0.003), although this trend stalled or reversed during the 2000s, particularly in northern China. The decrease in vegetation growth during the last decade over northern China was accompanied by the increase in extreme drought events in the 2000s. In southern China, although both precipitation and PDSI data suggest a greater area experiencing drought events during the 2000s than in the 1980s, the area showing negative vegetation greenness decreased consistently during the whole study period. تؤثر الأحداث المناخية المتطرفة مثل الجفاف والفيضانات وموجات الحر والعواصف الجليدية على النظم الإيكولوجية وكذلك المجتمعات البشرية. هناك قلق واسع النطاق بشأن كيفية استجابة النظم الإيكولوجية الأرضية للظواهر المناخية المتطرفة في سياق الاحترار العالمي. في هذه الدراسة، استخدمنا بيانات خضرة الغطاء النباتي المستمدة من الأقمار الصناعية (مؤشر الاختلاف الطبيعي للغطاء النباتي ؛ NDVI)، وبيانات محطة الطقس في الموقع (درجة الحرارة وهطول الأمطار) ومؤشر بالمر لشدة الجفاف (PDSI) لتحليل التغير المكاني والزماني للمنطقة التي تعاني من شذوذ خضرة الغطاء النباتي والظواهر المناخية المتطرفة في الصين من 1982 إلى 2009. على المستوى الوطني، وجدنا أن الصين شهدت اتجاهًا متزايدًا في موجات الحرارة وأحداث الجفاف خلال فترة الدراسة. ارتفع متوسط نسبة المحطات المناخية ذات أحداث الجفاف (المحددة بموسم النمو PDSI <-2) المكتشفة من 8 ٪ في الثمانينيات، إلى ما يقرب من 20 ٪ في العقد الأول من القرن الحادي والعشرين، بمعدل 0.6 ٪ سنويًا-1 (R2 = 0.61، P < 0.001). على النقيض من ذلك، انخفضت المنطقة التي تظهر شذوذًا سلبيًا في خضرة الغطاء النباتي بمعدل 0.9 ٪ سنويًا-1 من عام 1982 إلى عام 2009 (R2 = 0.29، P = 0.003)، على الرغم من أن هذا الاتجاه توقف أو انعكس خلال العقد الأول من القرن الحادي والعشرين، لا سيما في شمال الصين. كان الانخفاض في نمو الغطاء النباتي خلال العقد الماضي في شمال الصين مصحوبًا بزيادة في أحداث الجفاف الشديد في العقد الأول من القرن الحادي والعشرين. في جنوب الصين، على الرغم من أن بيانات كل من هطول الأمطار و PDSI تشير إلى منطقة أكبر تعاني من أحداث الجفاف خلال العقد الأول من القرن الحادي والعشرين مقارنة بالثمانينيات، إلا أن المنطقة التي تظهر خضرة سلبية للغطاء النباتي انخفضت باستمرار خلال فترة الدراسة بأكملها.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-02929509Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-02929509Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/3/035701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-02929509Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-02929509Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/3/035701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2017 FrancePublisher:HAL CCSD Authors: Wang, Xuhui;Les terres cultivées représentent un cinquième de la surface émergée de la Terre. Elles fournissent des nutriments à l'homme, modifient le cycle biogéochimique et l'équilibre énergétique de la terre. L’évolution des terres cultivées dans le contexte du changement climatique et avec une intensification des actions anthropiques constitue un enjeu important pour la sécurité alimentaire et les exigences environnementales du développement durable. Le manuscrit de thèse s’inscrit dans cette thématique en exploitant les données de différentes sources et la modélisation numérique. Les données utilisées sont : les statistiques de rendements, les observations agro-météorologiques à long terme, les résultats des sites d’expérimentation avec du réchauffement, les jeux de données globales issus des processus de fusion ou d’assimilation, les données climatiques historiques et de projection future. La modélisation fait appel aux modèles statistiques et aux modèles de processus. Le manuscrit est composé d’une série de travaux de détection et d'attribution. Ils explorent la phénologie, le rendement et leurs réponses aux changements climatiques et aux pratiques de gestion. Ils sont soit sur l'échelle régionale soit sur l’échelle globale, en fonction de la disponibilité des données et de leur pertinence. Le chapitre 2 décrit la construction et l’utilisation d'un modèle statistique avec des données provinciales de rendement au Nord-est de Chine et des données climatiques historiques. Les résultats montrent un effet asymétrique de la température diurne sur le rendement du maïs. Le rendement du maïs augmente de 10.0±7.7% en réponse à une augmentation moyenne de 1oC pendant la saison de croissance quand il s’agit de la température minimale de nuit (Tmin), mais le rendement diminue de 13,4±7,1% quand il s’agit de la température maximale de jour (Tmax). Il y a une grande disparité spatiale pour la réponse à Tmax, ce qui peut s'expliquer partiellement par le fort gradient spatial de la température pendant la saison de croissance (R = -0,67, P <0,01). La réponse du rendement aux précipitations dépend aussi des conditions d'humidité. Malgré la détection d'impacts significatifs du changement climatique sur le rendement, une part importante de ses variations n’est pas expliquée par les variables climatiques, ce qui souligne le besoin urgent de pouvoir attribuer proprement les variations de rendement au changement climatique et aux pratiques de gestion. Le chapitre 3 présente le développement d’un algorithme d'optimisation basé sur la théorie de Bayes pour optimiser les paramètres importants contrôlant la phénologie dans le modèle ORCHIDEE-crop. L’utilisation du modèle optimisé permet de distinguer les effets de la gestion de ceux du changement climatique sur la période de croissance du riz (LGP). Les résultats du modèle optimisé ORCHIDEE-crop suggèrent que le changement climatique affecte la LGP différemment en fonction des types du riz. Le facteur climatique a fait raccourcir la LGP du riz précoce (-2,0±5,0 jour / décennie), allonger la LGP du riz tardif (1,1±5,4 jour / décennie). Il a peu d'effet sur la LGP du riz unique (-0,4±5,4 jour / décennie). Les résultats du modèle ORCHIDEE-crop montrent aussi que les changements intervenus dans la date de transplantation ont provoqué un changement généralisé de la LGP, mais seulement pour les sites de riz précoce. Ceci compense à la hauteur de 65% le raccourcissement de la LGP provoquée par le changement climatique. Le facteur dominant du changement LGP varie suivant les trois types de riz. La gestion est le principal facteur pour les riz précoce et unique. Ce chapitre démontre aussi qu'un modèle optimisé peut avoir une excellente capacité à représenter des variations régionales complexes de LGP. Croplands accounts for one-fifth of global land surface, providing calories for human beings and altering the global biogeochemical cycle and land surface energy balance. The response of croplands to climate change and intensifying human managements is of critical importance to food security and sustainability of the environment. The present manuscript of thesis utilizes various types of data sources (yield statistics, long-term agrometeorological observations, field warming experiments, data-driven global datasets, gridded historical climate dataset and projected climate change) and also modelling approaches (statistical model vs. process model). It presents a series of detection and attribution studies exploring how crop phenology and crop yield respond to climate change and some management practices at regional and global scales, according to data availability. In Chapter 2, a statistical model is constructed with prefecture-level yield statistics and historical climate observations over Northeast China. There are asymmetrical impacts of daytime and nighttime temperatures on maize yield. Maize yield increased by 10.0±7.7% in response to a 1 oC increase of daily minimum temperature (Tmin) averaged in the growing season, but decreased by 13.4±7.1% in response to a 1 oC warming of daily maximum temperature (Tmax). There is a large spatial variation in the yield response to Tmax, which can be partly explained by the spatial gradient of growing season mean temperature (R=-0.67, P95% probability that warmer temperatures would reduce yields for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and soybean (-10.6±5.8% K-1). For wheat, ST was less negative and only 89% likely to be negative (-2.9±2.3% K-1). The field-observation based constraints from the results of the warming experiments reduced uncertainties associated with modeled ST by 12-54% for the four crops.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationDoctoral thesis . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::c1205ef47009e838ab66f6b4845800cf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationDoctoral thesis . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::c1205ef47009e838ab66f6b4845800cf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Austria, United KingdomPublisher:Springer Science and Business Media LLC Mingzhu He; Shilong Piao; Chris Huntingford; Hao Xu; Xuhui Wang; Ana Bastos; Jiangpeng Cui; Thomas Gasser;AbstractGlobal warming is increasing due to the ongoing rise in atmospheric greenhouse gases, and has the potential to threaten humans and ecosystems severely. Carbon dioxide, the primary rising greenhouse gas, also enhances vegetation carbon uptake, partially offsetting emissions. The vegetation physiological response to rising carbon dioxide, through partial stomatal closure and leaf area increase, can also amplify global warming, yet this is rarely accounted for in climate mitigation assessments. Using six Earth System Models, we show that vegetation physiological response consistently amplifies warming as carbon dioxide rises, primarily due to stomatal closure-induced evapotranspiration reductions. Importantly, such warming partially offsets cooling through enhanced carbon storage. We also find a stronger warming with higher leaf area and less warming with lower leaf area. Our study shows that the vegetation physiological response to elevated carbon dioxide influences local climate, which may reduce the extent of expected climate benefits offered by terrestrial ecosystems.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00489-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00489-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 FrancePublisher:Springer Science and Business Media LLC Mengtian Huang; Yao Huang; Philippe Ciais; Zhenzhong Zeng; Xuhui Wang; Shilong Piao; Shilong Piao; Shushi Peng; Chuang Zhao;pmid: 27853151
pmc: PMC5118553
AbstractWheat growth is sensitive to temperature, but the effect of future warming on yield is uncertain. Here, focusing on China, we compiled 46 observations of the sensitivity of wheat yield to temperature change (SY,T, yield change per °C) from field warming experiments and 102 SY,T estimates from local process-based and statistical models. The average SY,T from field warming experiments, local process-based models and statistical models is −0.7±7.8(±s.d.)% per °C, −5.7±6.5% per °C and 0.4±4.4% per °C, respectively. Moreover, SY,T is different across regions and warming experiments indicate positive SY,T values in regions where growing-season mean temperature is low, and water supply is not limiting, and negative values elsewhere. Gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project appear to capture the spatial pattern of SY,T deduced from warming observations. These results from local manipulative experiments could be used to improve crop models in the future.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-02922380Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-02922380Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms13530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-02922380Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-02922380Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms13530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Wiley Authors: Wang, Xuhui; Ciais, Philippe; Wang, Yilong; Zhu, Dan;doi: 10.1111/gcb.14335
pmid: 29851198
AbstractInterannual variations of photosynthesis in tropical seasonally dry vegetation are one of the dominant drivers to interannual variations of atmosphericCO2growth rate. Yet, the seasonal differences in the response of photosynthesis to climate variations in these ecosystems remain poorly understood. Here using Normalized Difference Vegetation Index (NDVI), we explored the response of photosynthesis of seasonally dry tropical vegetation to climatic variations in the dry and the wet seasons during the past three decades. We found significant (p < 0.01) differences between dry and wet seasons in the interannual response of photosynthesis to temperature (γint) and to precipitation (δint).γintis ~1% °C−1more negative andδintis ~8% 100 mm−1more positive in the dry season than in the wet season. Further analyses show that the seasonal difference inγintcan be explained by background moisture and temperature conditions. Positiveγintoccurred in wet season where mean temperature is lower than 27°C and precipitation is at least 60 mm larger than potential evapotranspiration. Two widely used Gross Primary Productivity (GPP) estimates (empirical modeling by machine‐learning algorithm applied to flux tower measurements, and nine process‐based carbon cycle models) were examined for theGPP–climate relationship over wet and dry seasons. TheGPPderived from empirical modeling can partly reproduce the divergence ofγint, while most process models cannot. The overestimate by process models on negative impacts by warmer temperature during the wet season highlights the shortcomings of current carbon cycle models in representing interactive impacts of temperature and moisture on photosynthesis. Improving representations on soil water uptake, leaf temperature, nitrogen cycling, and soil moisture may help improve modeling skills in reproducing seasonal differences of photosynthesis–climate relationship and thus the projection for impacts of climate change on tropical carbon cycle.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu