- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Apantri Peungnumsai; Hiroyuki Miyazaki; Apichon Witayangkurn; Sohee Minsun Kim;doi: 10.3390/su122410382
Public transport service has been promoted to reduce the problems of traffic congestion and environmental impacts due to car dependency. Several public transportation modes are available in Bangkok Metropolitan Region (BMR) such as buses, heavy rails, vans, boats, taxis, and trains while in some areas have fewer modes of public transport available. The disparity of public transport service negatively impacts social equity. This study aims to identify the gaps between public transport supply and demand and to demonstrate introduced indicators to assess the public transport performance incorporating transport capacity and equilibrium access aspects. Supply index was used to evaluate the level of service, and the demand index was applied to estimate travel needs. Furthermore, the Lorenz curves and the Gini coefficients were used to measure the equity of public transport. The results highlight that more than half of the BMR population is living in low-supply high-demand areas for public transportation. Moreover, the equitable access analysis has identified that the high-income population has better access to public transport than the low-income population. The results suggest that public transport gaps and equity indicate the inclusiveness of public transportation, as well as to the areas where to improve the public transport service. Thus, the methodology used in this study can be applied to another city or region similar to BMR.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Morakot Worachairungreung; Sarawut Ninsawat; Apichon Witayangkurn; Matthew N. Dailey;doi: 10.3390/su13073907
Road traffic injuries are a major cause of morbidity and mortality worldwide and currently rank ninth globally among the leading causes of disease burden regarding disability-adjusted life years lost. Nonthaburi and Pathum Thani are parts of the greater Bangkok metropolitan area, and the road traffic injury rate is very high in these areas. This study aimed to identify the environmental factors affecting road traffic injury risk prone areas and classify road traffic injuries from an environmental factor dataset using machine learning algorithms. Road traffic injury risk prone areas were set as the dependent variables for the analysis, with other factors that influence road traffic injury risk prone areas being set as independent variables. A total of 20 environmental factors were selected from the spatial datasets. Then, machine learning algorithms were applied using a grid search. The first experiment from 2017 in Nonthaburi and Pathum Thani was used for training the model, and then, 2018 data from Nonthaburi and Pathum Thani were used for validation. The second experiment used 2018 Nonthaburi data for the training, and 2018 Pathum Thani data were used for the validation. The important factors were grocery stores, convenience stores, electronics stores, drugstores, schools, gas stations, restaurants, supermarkets, and road geometrics, with length being the most critical factor that influenced the road traffic injury risk prone model. The first and second experiments in a random forest model provided the best model environmental factors affecting road traffic injury risk prone areas, and machine learning can classify such road traffic injuries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/7/3907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/7/3907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Songkorn Siangsuebchart; Sarawut Ninsawat; Apichon Witayangkurn; Surachet Pravinvongvuth;doi: 10.3390/su13042178
Bangkok, the capital city of Thailand, is one of the most developed and expansive cities. Due to the ongoing development and expansion of Bangkok, urbanization has continued to expand into adjacent provinces, creating the Bangkok Metropolitan Region (BMR). Continuous monitoring of human mobility in BMR aids in public transport planning and design, and efficient performance assessment. The purpose of this study is to design and develop a process to derive human mobility patterns from the real movement of people who use both fixed-route and non-fixed-route public transport modes, including taxis, vans, and electric rail. Taxi GPS open data were collected by the Intelligent Traffic Information Center Foundation (iTIC) from all GPS-equipped taxis of one operator in BMR. GPS probe data of all operating GPS-equipped vans were collected by the Ministry of Transport’s Department of Land Transport for daily speed and driving behavior monitoring. Finally, the ridership data of all electric rail lines were collected from smartcards by the Automated Fare Collection (AFC). None of the previous works on human mobility extraction from multi-sourced big data have used van data; therefore, it is a challenge to use this data with other sources in the study of human mobility. Each public transport mode has traveling characteristics unique to its passengers and, therefore, specific analytical tools. Firstly, the taxi trip extraction process was developed using Hadoop Hive to process a large quantity of data spanning a one-month period to derive the origin and destination (OD) of each trip. Secondly, for van data, a Java program was used to construct the ODs of van trips. Thirdly, another Java program was used to create the ODs of the electric rail lines. All OD locations of these three modes were aggregated into transportation analysis zones (TAZ). The major taxi trip destinations were found to be international airports and provincial bus terminals. The significant trip destinations of vans were provincial bus terminals in Bangkok, electric rail stations, and the industrial estates in other provinces of BMR. In contrast, electric rail destinations were electric rail line interchange stations, the central business district (CBD), and commercial office areas. Therefore, these significant destinations of taxis and vans should be considered in electric rail planning to reduce the air pollution from gasoline vehicles (taxis and vans). Using the designed procedures, the up-to-date dataset of public transport can be processed to derive a time series of human mobility as an input into continuous and sustainable public transport planning and performance assessment. Based on the results of the study, the procedures can benefit other cities in Thailand and other countries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Bidur Devkota; Hiroyuki Miyazaki; Apichon Witayangkurn; Sohee Minsun Kim;doi: 10.3390/su11174718
Easy, economical, and near-real-time identification of tourism areas of interest is useful for tourism planning and management. Numerous studies have been accomplished to analyze and evaluate the tourism conditions of a place using free and near-real-time data sources such as social media. This study demonstrates the potential of volunteered geographic information, mainly Twitter and OpenStreetMap, for discovering tourism areas of interest. Active tweet clusters generated using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm and building footprint information are used to identify touristic places that ensure the availability of basic essential facilities for travelers. Furthermore, an investigation is made to examine the usefulness of nighttime light remotely sensed data to recognize such tourism areas. The study successfully discovered important tourism areas in urban and remote regions in Nepal which have relatively low social media penetration. The effectiveness of the proposed framework is examined using the F1 measure. The accuracy assessment showed F1 score of 0.72 and 0.74 in the selected regions. Hence, the outcomes of this study can provide a valuable reference for various stakeholders such as tourism planners, urban planners, and so on.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/17/4718/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/17/4718/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: John Sullivan; Apichon Witayangkurn;Rooftop photovoltaic (PV) power systems constitute a viable alternative energy technology that can significantly reduce electricity costs. The rapid increase in installations has led to a mismatch between planned power generation and actual electricity demand, necessitating effective monitoring and impact assessment. This study proposes a novel approach for detecting solar rooftops using publicly available satellite imagery over large areas. We also introduce a technique for estimating solar panel size and potential energy production, with outputs formatted for GIS applications. Employing a modified U-Net architecture with pre- and post-processing techniques, our experiments achieved an Intersection over Union score of 0.7879 and a Dice score of 0.8808. Image tiling and mosaicking with georeferencing were used to support large-scale imagery. The detection results were post-processed through polygonization and smoothing using the Douglas-Peucker algorithm. Panel size and power generation were then calculated and attached as attributes. Through satellite image analysis, this study aims to accurately identify and evaluate solar rooftops nationwide, providing valuable insights for homeowners, businesses, and government authorities. This facilitates informed decision-making, cost reduction, and contributions to environmental goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Apantri Peungnumsai; Hiroyuki Miyazaki; Apichon Witayangkurn; Sohee Minsun Kim;doi: 10.3390/su122410382
Public transport service has been promoted to reduce the problems of traffic congestion and environmental impacts due to car dependency. Several public transportation modes are available in Bangkok Metropolitan Region (BMR) such as buses, heavy rails, vans, boats, taxis, and trains while in some areas have fewer modes of public transport available. The disparity of public transport service negatively impacts social equity. This study aims to identify the gaps between public transport supply and demand and to demonstrate introduced indicators to assess the public transport performance incorporating transport capacity and equilibrium access aspects. Supply index was used to evaluate the level of service, and the demand index was applied to estimate travel needs. Furthermore, the Lorenz curves and the Gini coefficients were used to measure the equity of public transport. The results highlight that more than half of the BMR population is living in low-supply high-demand areas for public transportation. Moreover, the equitable access analysis has identified that the high-income population has better access to public transport than the low-income population. The results suggest that public transport gaps and equity indicate the inclusiveness of public transportation, as well as to the areas where to improve the public transport service. Thus, the methodology used in this study can be applied to another city or region similar to BMR.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Morakot Worachairungreung; Sarawut Ninsawat; Apichon Witayangkurn; Matthew N. Dailey;doi: 10.3390/su13073907
Road traffic injuries are a major cause of morbidity and mortality worldwide and currently rank ninth globally among the leading causes of disease burden regarding disability-adjusted life years lost. Nonthaburi and Pathum Thani are parts of the greater Bangkok metropolitan area, and the road traffic injury rate is very high in these areas. This study aimed to identify the environmental factors affecting road traffic injury risk prone areas and classify road traffic injuries from an environmental factor dataset using machine learning algorithms. Road traffic injury risk prone areas were set as the dependent variables for the analysis, with other factors that influence road traffic injury risk prone areas being set as independent variables. A total of 20 environmental factors were selected from the spatial datasets. Then, machine learning algorithms were applied using a grid search. The first experiment from 2017 in Nonthaburi and Pathum Thani was used for training the model, and then, 2018 data from Nonthaburi and Pathum Thani were used for validation. The second experiment used 2018 Nonthaburi data for the training, and 2018 Pathum Thani data were used for the validation. The important factors were grocery stores, convenience stores, electronics stores, drugstores, schools, gas stations, restaurants, supermarkets, and road geometrics, with length being the most critical factor that influenced the road traffic injury risk prone model. The first and second experiments in a random forest model provided the best model environmental factors affecting road traffic injury risk prone areas, and machine learning can classify such road traffic injuries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/7/3907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/7/3907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Songkorn Siangsuebchart; Sarawut Ninsawat; Apichon Witayangkurn; Surachet Pravinvongvuth;doi: 10.3390/su13042178
Bangkok, the capital city of Thailand, is one of the most developed and expansive cities. Due to the ongoing development and expansion of Bangkok, urbanization has continued to expand into adjacent provinces, creating the Bangkok Metropolitan Region (BMR). Continuous monitoring of human mobility in BMR aids in public transport planning and design, and efficient performance assessment. The purpose of this study is to design and develop a process to derive human mobility patterns from the real movement of people who use both fixed-route and non-fixed-route public transport modes, including taxis, vans, and electric rail. Taxi GPS open data were collected by the Intelligent Traffic Information Center Foundation (iTIC) from all GPS-equipped taxis of one operator in BMR. GPS probe data of all operating GPS-equipped vans were collected by the Ministry of Transport’s Department of Land Transport for daily speed and driving behavior monitoring. Finally, the ridership data of all electric rail lines were collected from smartcards by the Automated Fare Collection (AFC). None of the previous works on human mobility extraction from multi-sourced big data have used van data; therefore, it is a challenge to use this data with other sources in the study of human mobility. Each public transport mode has traveling characteristics unique to its passengers and, therefore, specific analytical tools. Firstly, the taxi trip extraction process was developed using Hadoop Hive to process a large quantity of data spanning a one-month period to derive the origin and destination (OD) of each trip. Secondly, for van data, a Java program was used to construct the ODs of van trips. Thirdly, another Java program was used to create the ODs of the electric rail lines. All OD locations of these three modes were aggregated into transportation analysis zones (TAZ). The major taxi trip destinations were found to be international airports and provincial bus terminals. The significant trip destinations of vans were provincial bus terminals in Bangkok, electric rail stations, and the industrial estates in other provinces of BMR. In contrast, electric rail destinations were electric rail line interchange stations, the central business district (CBD), and commercial office areas. Therefore, these significant destinations of taxis and vans should be considered in electric rail planning to reduce the air pollution from gasoline vehicles (taxis and vans). Using the designed procedures, the up-to-date dataset of public transport can be processed to derive a time series of human mobility as an input into continuous and sustainable public transport planning and performance assessment. Based on the results of the study, the procedures can benefit other cities in Thailand and other countries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/4/2178/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Bidur Devkota; Hiroyuki Miyazaki; Apichon Witayangkurn; Sohee Minsun Kim;doi: 10.3390/su11174718
Easy, economical, and near-real-time identification of tourism areas of interest is useful for tourism planning and management. Numerous studies have been accomplished to analyze and evaluate the tourism conditions of a place using free and near-real-time data sources such as social media. This study demonstrates the potential of volunteered geographic information, mainly Twitter and OpenStreetMap, for discovering tourism areas of interest. Active tweet clusters generated using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm and building footprint information are used to identify touristic places that ensure the availability of basic essential facilities for travelers. Furthermore, an investigation is made to examine the usefulness of nighttime light remotely sensed data to recognize such tourism areas. The study successfully discovered important tourism areas in urban and remote regions in Nepal which have relatively low social media penetration. The effectiveness of the proposed framework is examined using the F1 measure. The accuracy assessment showed F1 score of 0.72 and 0.74 in the selected regions. Hence, the outcomes of this study can provide a valuable reference for various stakeholders such as tourism planners, urban planners, and so on.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/17/4718/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/17/4718/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: John Sullivan; Apichon Witayangkurn;Rooftop photovoltaic (PV) power systems constitute a viable alternative energy technology that can significantly reduce electricity costs. The rapid increase in installations has led to a mismatch between planned power generation and actual electricity demand, necessitating effective monitoring and impact assessment. This study proposes a novel approach for detecting solar rooftops using publicly available satellite imagery over large areas. We also introduce a technique for estimating solar panel size and potential energy production, with outputs formatted for GIS applications. Employing a modified U-Net architecture with pre- and post-processing techniques, our experiments achieved an Intersection over Union score of 0.7879 and a Dice score of 0.8808. Image tiling and mosaicking with georeferencing were used to support large-scale imagery. The detection results were post-processed through polygonization and smoothing using the Douglas-Peucker algorithm. Panel size and power generation were then calculated and attached as attributes. Through satellite image analysis, this study aims to accurately identify and evaluate solar rooftops nationwide, providing valuable insights for homeowners, businesses, and government authorities. This facilitates informed decision-making, cost reduction, and contributions to environmental goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
