- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | ECOHERBEC| ECOHERBNiles J. Hasselquist; Robert G. Björk; Micael Jonsson; Chelsea Chisholm; Mats P. Björkman; Jordan R. Mayor; Thirze D. G. Hermans; Maja K. Sundqvist; Maja K. Sundqvist; Aimée T. Classen; Aimée T. Classen; Johannes Rousk; Daan Blok; Göran Wallin; Anders Ahlström; Jeppe A. Kristensen; Johan Uddling; Nitin Chaudhary; Jing Tang; Jenny Ahlstrand; Ryan A. Sponseller; Hanna Lee; Martin Berggren; Michael Becker; Daniel B. Metcalfe; David E. Tenenbaum; Karolina Pantazatou; Janet S. Prevéy; Weiya Zhang; Weiya Zhang; Abdulhakim M. Abdi; Bright B. Kumordzi;pmid: 30013133
Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0612-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0612-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:MDPI AG Funded by:UKRI | GCRF-AFRICAP - Agricultur...UKRI| GCRF-AFRICAP - Agricultural and Food-system Resilience: Increasing Capacity and Advising PolicyAndrew J. Dougill; Thirze D. G. Hermans; Samuel Eze; Philip Antwi-Agyei; Susannah M. Sallu;doi: 10.3390/su13179909
Efforts to meet the growing demand for food across Africa have led to unsustainable land management practices that weaken the resilience of African Food Systems. Soil health is key to building more climate-resilient agricultural systems and can be improved through Climate-Smart Agriculture (CSA) practices that also enhance soil carbon storage. Many CSA practices are being implemented by African farmers, whereas others are being actively promoted but adoption remains low due to multiple factors including weak policy integration, limited institutional support, and inadequate agricultural extension advice. This Short Communications paper presents overview findings from trans-disciplinary research projects from Southern, East, and West Africa to evaluate the potential importance of integrated participatory soil health studies designed to inform context-specific recommendations and policies for resilient African food systems. The use of soil health indicators to measure the effectiveness of implemented CSA practices including Conservation Agriculture in maize-based systems and Soil and Water Conservation in Highland African systems are discussed. The paper identifies how more integrated research can help to enable shared learning and the enhanced knowledge exchange required for the upscaling of sustainable land management practices enabled through enhanced farmer participation in the chain of CSA activities from intervention design to community evaluation of impacts.
CORE arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Netherlands, France, FrancePublisher:Elsevier BV Funded by:UKRI | NERC Science @ Leeds and ...UKRI| NERC Science @ Leeds and York - Site for PhD Training in Environmental Research (SPHERES)Hermans, TDG; Dougill, AJ; Whitfield, S; Peacock, CL; Eze, S; Thierfelder, C;The challenges of soil degradation and climate change have led to the emergence of Conservation Agriculture (CA) as a sustainable alternative to tillage-based agriculture systems. Despite the recognition of positive impacts on soil health, CA adoption in Africa has remained low. Previous soil health studies have mainly focused on 'scientific' measurements, without consideration of local knowledge, which influences how farmers interpret CA impacts and future land management decisions. This study, based in Malawi, aims to 1) combine local knowledge and conventional soil science approaches to develop a contextualised understanding of the impact of CA on soil health; and 2) understand how an integrated approach can contribute to explaining farmer decision-making on land management. Key farmers' indicators of soil health were crop performance, soil consistence, moisture content, erosion, colour, and structure. These local indicators were consistent with conventional soil health indicators. By combining farmers' observations with soil measurements, we observed that CA improved soil structure, moisture (Mwansambo 7.54%-38.15% lower for CP; Lemu 1.57%-47.39% lower for CP) and infiltration (Lemu CAM/CAML 0.15 cms-1, CP 0.09 cms-1; Mwansambo CP/CAM 0.14 cms-1, CAML 0.18 cms-1). In the conventional practice, farmers perceived ridges to redistribute nutrients, which corresponded with recorded higher exchangeable ammonium (Lemu CP 76.0 mgkg -1, CAM 49.4 mgkg -1, CAML 51.7 mgkg -1), nitrate/nitrite values (Mwansambo CP 200.7 mgkg -1, CAM 171.9 mgkg -1, CAML 103.3 mgkg -1). This perception contributes to the popularity of ridges, despite the higher yield measurements under CA (Mwansambo CP 3225 kgha-1, CAML 5067 kgha-1, CAM 5160 kgha-1; Lemu CP 2886 kgha-1, CAM 2872 kgha-1, CAML 3454 kgha-1 ). The perceived carbon benefits of residues and ridge preference has promoted burying residues in ridges. Integrated approaches contribute to more nuanced and localized perceptions about land management. We propose that the stepwise integrated soil assessment framework developed in this study can be applied more widely in understanding the role of soil health in farmer-decision making, providing a learning process for downscaling technologies and widening the evidence base on sustainable land management practices.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/115601Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/115601Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | ECOHERBEC| ECOHERBNiles J. Hasselquist; Robert G. Björk; Micael Jonsson; Chelsea Chisholm; Mats P. Björkman; Jordan R. Mayor; Thirze D. G. Hermans; Maja K. Sundqvist; Maja K. Sundqvist; Aimée T. Classen; Aimée T. Classen; Johannes Rousk; Daan Blok; Göran Wallin; Anders Ahlström; Jeppe A. Kristensen; Johan Uddling; Nitin Chaudhary; Jing Tang; Jenny Ahlstrand; Ryan A. Sponseller; Hanna Lee; Martin Berggren; Michael Becker; Daniel B. Metcalfe; David E. Tenenbaum; Karolina Pantazatou; Janet S. Prevéy; Weiya Zhang; Weiya Zhang; Abdulhakim M. Abdi; Bright B. Kumordzi;pmid: 30013133
Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0612-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0612-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:MDPI AG Funded by:UKRI | GCRF-AFRICAP - Agricultur...UKRI| GCRF-AFRICAP - Agricultural and Food-system Resilience: Increasing Capacity and Advising PolicyAndrew J. Dougill; Thirze D. G. Hermans; Samuel Eze; Philip Antwi-Agyei; Susannah M. Sallu;doi: 10.3390/su13179909
Efforts to meet the growing demand for food across Africa have led to unsustainable land management practices that weaken the resilience of African Food Systems. Soil health is key to building more climate-resilient agricultural systems and can be improved through Climate-Smart Agriculture (CSA) practices that also enhance soil carbon storage. Many CSA practices are being implemented by African farmers, whereas others are being actively promoted but adoption remains low due to multiple factors including weak policy integration, limited institutional support, and inadequate agricultural extension advice. This Short Communications paper presents overview findings from trans-disciplinary research projects from Southern, East, and West Africa to evaluate the potential importance of integrated participatory soil health studies designed to inform context-specific recommendations and policies for resilient African food systems. The use of soil health indicators to measure the effectiveness of implemented CSA practices including Conservation Agriculture in maize-based systems and Soil and Water Conservation in Highland African systems are discussed. The paper identifies how more integrated research can help to enable shared learning and the enhanced knowledge exchange required for the upscaling of sustainable land management practices enabled through enhanced farmer participation in the chain of CSA activities from intervention design to community evaluation of impacts.
CORE arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Netherlands, France, FrancePublisher:Elsevier BV Funded by:UKRI | NERC Science @ Leeds and ...UKRI| NERC Science @ Leeds and York - Site for PhD Training in Environmental Research (SPHERES)Hermans, TDG; Dougill, AJ; Whitfield, S; Peacock, CL; Eze, S; Thierfelder, C;The challenges of soil degradation and climate change have led to the emergence of Conservation Agriculture (CA) as a sustainable alternative to tillage-based agriculture systems. Despite the recognition of positive impacts on soil health, CA adoption in Africa has remained low. Previous soil health studies have mainly focused on 'scientific' measurements, without consideration of local knowledge, which influences how farmers interpret CA impacts and future land management decisions. This study, based in Malawi, aims to 1) combine local knowledge and conventional soil science approaches to develop a contextualised understanding of the impact of CA on soil health; and 2) understand how an integrated approach can contribute to explaining farmer decision-making on land management. Key farmers' indicators of soil health were crop performance, soil consistence, moisture content, erosion, colour, and structure. These local indicators were consistent with conventional soil health indicators. By combining farmers' observations with soil measurements, we observed that CA improved soil structure, moisture (Mwansambo 7.54%-38.15% lower for CP; Lemu 1.57%-47.39% lower for CP) and infiltration (Lemu CAM/CAML 0.15 cms-1, CP 0.09 cms-1; Mwansambo CP/CAM 0.14 cms-1, CAML 0.18 cms-1). In the conventional practice, farmers perceived ridges to redistribute nutrients, which corresponded with recorded higher exchangeable ammonium (Lemu CP 76.0 mgkg -1, CAM 49.4 mgkg -1, CAML 51.7 mgkg -1), nitrate/nitrite values (Mwansambo CP 200.7 mgkg -1, CAM 171.9 mgkg -1, CAML 103.3 mgkg -1). This perception contributes to the popularity of ridges, despite the higher yield measurements under CA (Mwansambo CP 3225 kgha-1, CAML 5067 kgha-1, CAM 5160 kgha-1; Lemu CP 2886 kgha-1, CAM 2872 kgha-1, CAML 3454 kgha-1 ). The perceived carbon benefits of residues and ridge preference has promoted burying residues in ridges. Integrated approaches contribute to more nuanced and localized perceptions about land management. We propose that the stepwise integrated soil assessment framework developed in this study can be applied more widely in understanding the role of soil health in farmer-decision making, providing a learning process for downscaling technologies and widening the evidence base on sustainable land management practices.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/115601Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/115601Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu