- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 Belgium, France, FrancePublisher:Elsevier BV Funded by:EC | POPFULLEC| POPFULLNjakou Djomo, Sylvestre; Witters, N.; Van Dael, M.; Gabrielle, Benoit; Ceulemans, R.;handle: 10067/1257500151162165141 , 1942/19018
AbstractBioenergy (i.e., bioheat and bioelectricity) could simultaneously address energy insecurity and climate change. However, bioenergy’s impact on climate change remains incomplete when land use changes (LUC), soil organic carbon (SOC) changes, and the auxiliary energy consumption are not accounted for in the life cycle. Using data collected from Belgian farmers, combined heat and power (CHP) operators, and a life cycle approach, we compared 40 bioenergy pathways to a fossil-fuel CHP system. Bioenergy required between 0.024 and 0.204MJ (0.86MJth+0.14 MJel)−1, and the estimated energy ratio (energy output-to-input ratio) ranged from 5 to 42. SOC loss increased the greenhouse gas (GHG) emissions of residue based bioenergy. On average, the iLUC represented ∼67% of the total GHG emissions of bioenergy from perennial energy crops. However, the net LUC (i.e., dLUC+iLUC) effects substantially reduced the GHG emissions incurred during all phases of bioenergy production from perennial crops, turning most pathways based on energy crops to GHG sinks. Relative to fossil-fuel based CHP all bioenergy pathways reduced GHG emissions by 8–114%. Fluidized bed technologies maximize the energy and the GHG benefits of all pathways. The size and the power-to-heat ratio for a given CHP influenced the energy and GHG performance of these bioenergy pathways. Even with the inclusion of LUC, perennial crops had better GHG performance than agricultural and forest residues. Perennial crops have a high potential in the multidimensional approach to increase energy security and to mitigate climate change. The full impacts of bioenergy from these perennial energy crops must, however, be assessed before they can be deployed on a large scale.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Belgium, Netherlands, Netherlands, Netherlands, Sweden, Germany, Italy, Netherlands, FrancePublisher:Copernicus GmbH Funded by:EC | COCOS, EC | LUISE, EC | DOFOCO +5 projectsEC| COCOS ,EC| LUISE ,EC| DOFOCO ,EC| GEOCARBON ,EC| GHG EUROPE ,EC| POPFULL ,NWO| A multiple constraint data assimilation system for the carbon cycle ,EC| JULIASebastiaan Luyssaert; Gwénaël Abril; R. J. Andres; David Bastviken; Valentin Bellassen; P. Bergamaschi; Philippe Bousquet; Frédéric Chevallier; Philippe Ciais; M. Corazza; René Dechow; Karl‐Heinz Erb; Giuseppe Etiope; Audrey Fortems-Cheiney; Giacomo Grassi; Jens Hartmann; Martin Jung; Juliette Lathière; Annalea Lohila; Emilio Mayorga; Nils Moosdorf; D. S. Njakou; Juliane Otto; Dario Papale; Wouter Peters; P. Peylin; Peter A. Raymond; Christian Rödenbeck; Sanna Saarnio; Ernst‐Detlef Schulze; Sophie Szopa; Rona L. Thompson; Pieter Johannes Verkerk; Nicolas Vuichard; R. Wang; M. Wattenbach; Sönke Zaehle;Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294 ± 545 Tg C in CO2-eq yr−1), inventories (1299 ± 200 Tg C in CO2-eq yr−1) and inversions (1210 ± 405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205 ± 72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Article . 2012GFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPublikationer från Linköpings universitetArticle . 2012Data sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2012 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-9...Other literature typeData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Article . 2012GFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPublikationer från Linköpings universitetArticle . 2012Data sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2012 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-9...Other literature typeData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:EC | DOFOCO, EC | POPFULL, EC | IMBALANCE-PEC| DOFOCO ,EC| POPFULL ,EC| IMBALANCE-PT. De Groote; T. De Groote; Ivan A. Janssens; S. Njakou Djomo; Reinhart Ceulemans; Anne Gobin;Abstract Poplar (Populus spp.) and willow (Salix spp.) short rotation coppice (SRC) are attractive feedstock for conversion to renewable electricity. Site managers typically optimize biomass production at their sites. However, maximum biomass production does not necessarily equate an optimal CO2 balance, water use and energy production. This is because many operational actions consume water and energy and emit CO2, either on-site or off-site. Coupling a land surface model (ORCHIDEE-SRC) with life cycle assessment enabled us to determine the optimal management for SRC in Belgium. We simulated 120 different management scenarios for each of two well-studied Belgian SRC sites (i.e. Boom and Lochristi). Simulated soil carbon changes suggested substantial carbon losses of 20–30 Mg ha−1 over a time period of 20 years, which were within observation-based uncertainty bounds. Results showed that in Belgium, which has a temperate maritime climate, optimal management of SRC has a rotation cycle of two years without irrigation. Energy inputs for this optimal management were 5.2 GJ ha−1 yr−1 for the Boom site and 5.3 GJ ha−1 yr−1 for the Lochristi site, while the biomass yields at Boom and Lochristi were 9.0 Mg ha−1 yr−1 and 9.4 Mg ha−1 yr−1, respectively. The energy ratio (i.e., ratio of bioelectricity output to cumulative energy input) for this optimal management was 12, on average. Planting density turned out to be unimportant, while rotation length turned out to be most important to obtain the highest energy ratio and still maintain high biomass yield. Scenarios with high energy-input generated more bioenergy outputs, but the energy gains did not compensate for the increased energy inputs. Reductions in energy consumption per unit of bioenergy output should target the agricultural stage since it accounted for the largest energy share in the production chain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Kristof May; S. Njakou Djomo; S. Njakou Djomo; K. De Vos; Nele Witters; Hossein Azadi; S. Van Passel; S. Van Passel; Michele Moretti;handle: 11568/1160954
Abstract Smart grids (SGs) have a central role in the development of the global power sector. Cost-benefit analyses and environmental impact assessments are used to support policy on the deployment of SG systems and technologies. However, the conflicting and widely varying estimates of costs, benefits, greenhouse gas (GHG) emission reduction, and energy savings in literature leave policy makers struggling with how to advise regarding SG deployment. Identifying the causes for the wide variation of individual estimates in the literature is crucial if evaluations are to be used in decision-making. This paper (i) summarizes and compares the methodologies used for economic and environmental evaluation of SGs (ii) identifies the sources of variation in estimates across studies, and (iii) point to gap in research on economic and environmental analyses of SG systems. Seventeen studies (nine articles and eight reports published between 2000 and 2015) addressing the economic costs versus benefits, energy efficiency, and GHG emissions of SGs were systematically searched, located, selected, and reviewed. Their methods and data were subsequently extracted and analysed. The results show that no standardized method currently exists for assessing the economic and environmental impacts of SG systems. The costs varied between 0.03 and 1143 M€/yr, while the benefits ranged from 0.04 to 804 M€/yr, suggesting that SG systems do not result in cost savings The primary energy savings ranged from 0.03 to 0.95 MJ/kWh, whereas the GHG emission reduction ranged from 10 to 180 gCO2/kWh, depending on the country grid mix and the system boundary of the SG system considered. The findings demonstrate that although SG systems are energy efficient and reduce GHG emissions, investments in SG systems may not yield any benefits. Standardizing some methodologies and assumptions such as discount rates, time horizon and scrutinizing some key input data will result in more consistent estimates of costs and benefits, GHG emission reduction, and energy savings.
Archivio della Ricer... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Archivio della Ricer... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley Authors: Sylvestre Njakou Djomo; Marie Trydeman Knudsen; Louise Martinsen; Mikael Skou Andersen; +3 AuthorsSylvestre Njakou Djomo; Marie Trydeman Knudsen; Louise Martinsen; Mikael Skou Andersen; Morten Ambye‐Jensen; Henrik Bjarne Møller; John Erik Hermansen;doi: 10.1002/bbb.2098
AbstractThe heavy reliance of the livestock industry of the European Union (EU) on feed protein imports has initiated a transition to alternative protein sources such as grass proteins. Green biorefineries (which process grass into protein and other related bio‐products) are gaining interest in the EU as the EU searches for ways to cut its import of feed proteins, to reduce its reliance on fossil fuels, and to combat climate change. However, the vulnerability of green biorefineries to fossil energy constraints has not been studied. We estimated the energy conversion efficiencies (EE) and the energy return on investment (EROI) of bio‐products from standalone (SGBR) and integrated grass refinery (IGBR) systems using scenario and energy analysis. The base scenario assumes an SGBR that processes grass into protein, fiber, and brown juice. The three IGBR scenarios assume that grass is processed into protein, fiber, and biomethane (Scenario 1); into protein, fiber, heat, and electricity (Scenario 2); or into protein, fiber, heat, and biomethane (Scenario 3). We found that the EE of the IGBR (83%–85%) largely exceeded that of the SGBR (77%) in all cases. Energy returns on investment were lower for grass than for clover‐grass because of the high fertilizer needs of the former. The standard EROIs (EROIstd) for grass protein ranged from 1.6 to 5.4 over the various feedstocks and scenarios evaluated. The EROIstd decreased when the system boundary was expanded to the point of use (EROIpou), or when they were adjusted for quality (EROIqly). Other bioproducts from both SGBR and IGBR also had high EROIstd, and showed similar patterns to that of grass protein (i.e., EROIstd > EROIpou > EROIqly). Although Scenario 1 had a high EE relative to the base scenario, its heavy reliance on auxiliary energy inputs reduced the EROIs of its products. Our analysis showed the strong impacts of brown‐juice recycling in the energy performance of green biorefinery. It thus deserves close attention when designing and implementing a green biorefinery in a given region. With favorable economic conditions, green biorefineries could contribute to the reduction of food and energy insecurity in Europe in a sustainable way. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd
Hyper Article en Lig... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2011 BelgiumPublisher:Elsevier BV Authors: Dagnija Blumberga; Sylvestre Njakou Djomo; Sylvestre Njakou Djomo;A life cycle assessment was performed to quantify and compare the energetic and environmental performances of hydrogen from wheat straw (WS-H(2)), sweet sorghum stalk (SSS-H(2)), and steam potato peels (SPP-H(2)). Inventory data were derived from a pilot plant. Impacts were assessed using the impact 2002+ method. When co-product was not considered, the greenhouse gas (GHG) emissions were 5.60 kg CO(2eq) kg(-1) H(2) for WS-H(2), 5.32 kg CO(2eq) kg(-1) H(2) for SSS-H(2), and 5.18 kg CO(2eq) kg(-1) H(2) for SPP-H(2). BioH(2) pathways reduced GHG emissions by 52-56% compared to diesel and by 54-57% compared to steam methane reforming production of H(2). The energy ratios (ER) were also comparable: 1.08 for WS-H(2), 1.14 for SSS-H(2) and 1.17 for SPP-H(2). A shift from SPP-H(2) to WS-H(2) would therefore not affect the ER and GHG emissions of these BioH(2) pathways. When co-product was considered, a shift from SPP-H(2) to WS-H(2) or SSS-H(2) decreased the ER, while increasing the GHG emissions significantly. Co-product yield should be considered when selecting BioH(2) feedstocks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Elsevier BV Authors: Ranjan Parajuli; Marie Trydeman Knudsen; Morten Birkved; Sylvestre Njakou Djomo; +2 AuthorsRanjan Parajuli; Marie Trydeman Knudsen; Morten Birkved; Sylvestre Njakou Djomo; Andrea Corona; Tommy Dalgaard;pmid: 28448939
This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJEtOH+1kgLA", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP100), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C5 sugar to boost bioethanol yield and that the use of residual streams in the energy conversion were beneficial for optimizing the system performance.
The Science of The T... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyThe Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert The Science of The T... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyThe Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2013 BelgiumPublisher:Elsevier BV Funded by:EC | POPFULL, EC | GHG-POPFULLEC| POPFULL ,EC| GHG-POPFULLS. Njakou Djomo; O. El Kasmioui; T. De Groote; L.S. Broeckx; M.S. Verlinden; G. Berhongaray; R. Fichot; D. Zona; S.Y. Dillen; J.S. King; I.A. Janssens; R. Ceulemans;handle: 10067/1093050151162165141
AbstractShort-rotation woody crops (SRWCs) are a promising means to enhance the EU renewable energy sources while mitigating greenhouse gas (GHG) emissions. However, there are concerns that the GHG mitigation potential of bioelectricity may be nullified due to GHG emissions from direct land use changes (dLUCs). In order to evaluate quantitatively the GHG mitigation potential of bioelectricity from SRWC we managed an operational SRWC plantation (18.4ha) for bioelectricity production on a former agricultural land without supplemental irrigation or fertilization. We traced back to the primary energy level all farm labor, materials, and fossil fuel inputs to the bioelectricity production. We also sampled soil carbon and monitored fluxes of GHGs between the SRWC plantation and the atmosphere. We found that bioelectricity from SRWCs was energy efficient and yielded 200–227% more energy than required to produce it over a two-year rotation. The associated land requirement was 0.9m2kWhe-1 for the gasification and 1.1m2kWhe-1 for the combustion technology. Converting agricultural land into the SRWC plantation released 2.8 ± 0.2tCO2eha−1, which represented ∼89% of the total GHG emissions (256–272gCO2ekWhe-1) of bioelectricity production. Despite its high share of the total GHG emissions, dLUC did not negate the GHG benefits of bioelectricity. Indeed, the GHG savings of bioelectricity relative to the EU non-renewable grid mix power ranged between 52% and 54%. SRWC on agricultural lands with low soil organic carbon stocks are encouraging prospects for sustainable production of renewable energy with significant climate benefits.
Applied Energy arrow_drop_down http://dx.doi.org/10.1016/j.ap...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Applied Energy arrow_drop_down http://dx.doi.org/10.1016/j.ap...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Elsevier BV Authors: Henrik Thers; Sylvestre Njakou Djomo; Lars Elsgaard; Marie Trydeman Knudsen;pmid: 30928748
Winter oilseed rape (WOSR) is the main crop for biodiesel in the EU, where legislation demands at least 50% savings in greenhouse gas (GHG) emissions as compared to fossil diesel. Thus industrial sectors search for optimized management systems to lower GHG emissions from oilseed rape cultivation. Recently, pyrolysis of biomass with subsequent soil amendment of biochar has shown potentials for GHG mitigation in terms of carbon (C) sequestration, avoidance of fossil based electricity, and mitigation of soil nitrous oxide (N2O) emissions. Here we analyzed three WOSR scenarios in terms of their global warming impact using a life cycle assessment approach. The first was a reference scenario with average Danish WOSR cultivation where straw residues were incorporated to the soil. The others were biochar scenarios in which the oilseed rape straw was pyrolysed to biochar at two process temperatures (400 and 800 °C) and returned to the field. The concept of avoided atmospheric CO2 load was applied for calculation of C sequestration factors for biochar, which resulted in larger mitigation effects than derived from calculations of just the remaining C in soil. In total, GHG emissions were reduced by 73 to 83% in the two biochar scenarios as compared to the reference scenario, mainly due to increased C sequestration. The climate benefits were higher for pyrolysis of oilseed rape straw at 800 than at 400 °C. The results demonstrated that biochar has a potential to improve the life cycle GHG emissions of oilseed rape biodiesel, and highlighted the importance of consolidated key assumptions, such as biochar stability in soil and the CO2 load of marginal grid electricity.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2019 DenmarkPublisher:Zenodo Funded by:EC | SABIREC| SABIRAuthors: Timma, Lelde; Njakou Djomo, Sylvestre; Trydeman Knudsen, Marie;Since the land use and land use changes is much debated issue regarding sustainability of biorefineries. The aim of the research is to compare the impacts created from biorefinery process in the case land use is accounted in dynamic manner and to compare obtained impacts with “classical” LCA approach.In this study the modelling approach used will include coupling of life cycle assessment (LCA) with system dynamics methodology. System dynamics methodology would enrich possibilities of LCA, since this tool depicts interrelations of components in the systems studied.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Conference object . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Conference object . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2015 Belgium, France, FrancePublisher:Elsevier BV Funded by:EC | POPFULLEC| POPFULLNjakou Djomo, Sylvestre; Witters, N.; Van Dael, M.; Gabrielle, Benoit; Ceulemans, R.;handle: 10067/1257500151162165141 , 1942/19018
AbstractBioenergy (i.e., bioheat and bioelectricity) could simultaneously address energy insecurity and climate change. However, bioenergy’s impact on climate change remains incomplete when land use changes (LUC), soil organic carbon (SOC) changes, and the auxiliary energy consumption are not accounted for in the life cycle. Using data collected from Belgian farmers, combined heat and power (CHP) operators, and a life cycle approach, we compared 40 bioenergy pathways to a fossil-fuel CHP system. Bioenergy required between 0.024 and 0.204MJ (0.86MJth+0.14 MJel)−1, and the estimated energy ratio (energy output-to-input ratio) ranged from 5 to 42. SOC loss increased the greenhouse gas (GHG) emissions of residue based bioenergy. On average, the iLUC represented ∼67% of the total GHG emissions of bioenergy from perennial energy crops. However, the net LUC (i.e., dLUC+iLUC) effects substantially reduced the GHG emissions incurred during all phases of bioenergy production from perennial crops, turning most pathways based on energy crops to GHG sinks. Relative to fossil-fuel based CHP all bioenergy pathways reduced GHG emissions by 8–114%. Fluidized bed technologies maximize the energy and the GHG benefits of all pathways. The size and the power-to-heat ratio for a given CHP influenced the energy and GHG performance of these bioenergy pathways. Even with the inclusion of LUC, perennial crops had better GHG performance than agricultural and forest residues. Perennial crops have a high potential in the multidimensional approach to increase energy security and to mitigate climate change. The full impacts of bioenergy from these perennial energy crops must, however, be assessed before they can be deployed on a large scale.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Belgium, Netherlands, Netherlands, Netherlands, Sweden, Germany, Italy, Netherlands, FrancePublisher:Copernicus GmbH Funded by:EC | COCOS, EC | LUISE, EC | DOFOCO +5 projectsEC| COCOS ,EC| LUISE ,EC| DOFOCO ,EC| GEOCARBON ,EC| GHG EUROPE ,EC| POPFULL ,NWO| A multiple constraint data assimilation system for the carbon cycle ,EC| JULIASebastiaan Luyssaert; Gwénaël Abril; R. J. Andres; David Bastviken; Valentin Bellassen; P. Bergamaschi; Philippe Bousquet; Frédéric Chevallier; Philippe Ciais; M. Corazza; René Dechow; Karl‐Heinz Erb; Giuseppe Etiope; Audrey Fortems-Cheiney; Giacomo Grassi; Jens Hartmann; Martin Jung; Juliette Lathière; Annalea Lohila; Emilio Mayorga; Nils Moosdorf; D. S. Njakou; Juliane Otto; Dario Papale; Wouter Peters; P. Peylin; Peter A. Raymond; Christian Rödenbeck; Sanna Saarnio; Ernst‐Detlef Schulze; Sophie Szopa; Rona L. Thompson; Pieter Johannes Verkerk; Nicolas Vuichard; R. Wang; M. Wattenbach; Sönke Zaehle;Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294 ± 545 Tg C in CO2-eq yr−1), inventories (1299 ± 200 Tg C in CO2-eq yr−1) and inversions (1210 ± 405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205 ± 72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Article . 2012GFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPublikationer från Linköpings universitetArticle . 2012Data sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2012 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-9...Other literature typeData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Article . 2012GFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPublikationer från Linköpings universitetArticle . 2012Data sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2012 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-9...Other literature typeData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:EC | DOFOCO, EC | POPFULL, EC | IMBALANCE-PEC| DOFOCO ,EC| POPFULL ,EC| IMBALANCE-PT. De Groote; T. De Groote; Ivan A. Janssens; S. Njakou Djomo; Reinhart Ceulemans; Anne Gobin;Abstract Poplar (Populus spp.) and willow (Salix spp.) short rotation coppice (SRC) are attractive feedstock for conversion to renewable electricity. Site managers typically optimize biomass production at their sites. However, maximum biomass production does not necessarily equate an optimal CO2 balance, water use and energy production. This is because many operational actions consume water and energy and emit CO2, either on-site or off-site. Coupling a land surface model (ORCHIDEE-SRC) with life cycle assessment enabled us to determine the optimal management for SRC in Belgium. We simulated 120 different management scenarios for each of two well-studied Belgian SRC sites (i.e. Boom and Lochristi). Simulated soil carbon changes suggested substantial carbon losses of 20–30 Mg ha−1 over a time period of 20 years, which were within observation-based uncertainty bounds. Results showed that in Belgium, which has a temperate maritime climate, optimal management of SRC has a rotation cycle of two years without irrigation. Energy inputs for this optimal management were 5.2 GJ ha−1 yr−1 for the Boom site and 5.3 GJ ha−1 yr−1 for the Lochristi site, while the biomass yields at Boom and Lochristi were 9.0 Mg ha−1 yr−1 and 9.4 Mg ha−1 yr−1, respectively. The energy ratio (i.e., ratio of bioelectricity output to cumulative energy input) for this optimal management was 12, on average. Planting density turned out to be unimportant, while rotation length turned out to be most important to obtain the highest energy ratio and still maintain high biomass yield. Scenarios with high energy-input generated more bioenergy outputs, but the energy gains did not compensate for the increased energy inputs. Reductions in energy consumption per unit of bioenergy output should target the agricultural stage since it accounted for the largest energy share in the production chain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Kristof May; S. Njakou Djomo; S. Njakou Djomo; K. De Vos; Nele Witters; Hossein Azadi; S. Van Passel; S. Van Passel; Michele Moretti;handle: 11568/1160954
Abstract Smart grids (SGs) have a central role in the development of the global power sector. Cost-benefit analyses and environmental impact assessments are used to support policy on the deployment of SG systems and technologies. However, the conflicting and widely varying estimates of costs, benefits, greenhouse gas (GHG) emission reduction, and energy savings in literature leave policy makers struggling with how to advise regarding SG deployment. Identifying the causes for the wide variation of individual estimates in the literature is crucial if evaluations are to be used in decision-making. This paper (i) summarizes and compares the methodologies used for economic and environmental evaluation of SGs (ii) identifies the sources of variation in estimates across studies, and (iii) point to gap in research on economic and environmental analyses of SG systems. Seventeen studies (nine articles and eight reports published between 2000 and 2015) addressing the economic costs versus benefits, energy efficiency, and GHG emissions of SGs were systematically searched, located, selected, and reviewed. Their methods and data were subsequently extracted and analysed. The results show that no standardized method currently exists for assessing the economic and environmental impacts of SG systems. The costs varied between 0.03 and 1143 M€/yr, while the benefits ranged from 0.04 to 804 M€/yr, suggesting that SG systems do not result in cost savings The primary energy savings ranged from 0.03 to 0.95 MJ/kWh, whereas the GHG emission reduction ranged from 10 to 180 gCO2/kWh, depending on the country grid mix and the system boundary of the SG system considered. The findings demonstrate that although SG systems are energy efficient and reduce GHG emissions, investments in SG systems may not yield any benefits. Standardizing some methodologies and assumptions such as discount rates, time horizon and scrutinizing some key input data will result in more consistent estimates of costs and benefits, GHG emission reduction, and energy savings.
Archivio della Ricer... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Archivio della Ricer... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley Authors: Sylvestre Njakou Djomo; Marie Trydeman Knudsen; Louise Martinsen; Mikael Skou Andersen; +3 AuthorsSylvestre Njakou Djomo; Marie Trydeman Knudsen; Louise Martinsen; Mikael Skou Andersen; Morten Ambye‐Jensen; Henrik Bjarne Møller; John Erik Hermansen;doi: 10.1002/bbb.2098
AbstractThe heavy reliance of the livestock industry of the European Union (EU) on feed protein imports has initiated a transition to alternative protein sources such as grass proteins. Green biorefineries (which process grass into protein and other related bio‐products) are gaining interest in the EU as the EU searches for ways to cut its import of feed proteins, to reduce its reliance on fossil fuels, and to combat climate change. However, the vulnerability of green biorefineries to fossil energy constraints has not been studied. We estimated the energy conversion efficiencies (EE) and the energy return on investment (EROI) of bio‐products from standalone (SGBR) and integrated grass refinery (IGBR) systems using scenario and energy analysis. The base scenario assumes an SGBR that processes grass into protein, fiber, and brown juice. The three IGBR scenarios assume that grass is processed into protein, fiber, and biomethane (Scenario 1); into protein, fiber, heat, and electricity (Scenario 2); or into protein, fiber, heat, and biomethane (Scenario 3). We found that the EE of the IGBR (83%–85%) largely exceeded that of the SGBR (77%) in all cases. Energy returns on investment were lower for grass than for clover‐grass because of the high fertilizer needs of the former. The standard EROIs (EROIstd) for grass protein ranged from 1.6 to 5.4 over the various feedstocks and scenarios evaluated. The EROIstd decreased when the system boundary was expanded to the point of use (EROIpou), or when they were adjusted for quality (EROIqly). Other bioproducts from both SGBR and IGBR also had high EROIstd, and showed similar patterns to that of grass protein (i.e., EROIstd > EROIpou > EROIqly). Although Scenario 1 had a high EE relative to the base scenario, its heavy reliance on auxiliary energy inputs reduced the EROIs of its products. Our analysis showed the strong impacts of brown‐juice recycling in the energy performance of green biorefinery. It thus deserves close attention when designing and implementing a green biorefinery in a given region. With favorable economic conditions, green biorefineries could contribute to the reduction of food and energy insecurity in Europe in a sustainable way. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd
Hyper Article en Lig... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2011 BelgiumPublisher:Elsevier BV Authors: Dagnija Blumberga; Sylvestre Njakou Djomo; Sylvestre Njakou Djomo;A life cycle assessment was performed to quantify and compare the energetic and environmental performances of hydrogen from wheat straw (WS-H(2)), sweet sorghum stalk (SSS-H(2)), and steam potato peels (SPP-H(2)). Inventory data were derived from a pilot plant. Impacts were assessed using the impact 2002+ method. When co-product was not considered, the greenhouse gas (GHG) emissions were 5.60 kg CO(2eq) kg(-1) H(2) for WS-H(2), 5.32 kg CO(2eq) kg(-1) H(2) for SSS-H(2), and 5.18 kg CO(2eq) kg(-1) H(2) for SPP-H(2). BioH(2) pathways reduced GHG emissions by 52-56% compared to diesel and by 54-57% compared to steam methane reforming production of H(2). The energy ratios (ER) were also comparable: 1.08 for WS-H(2), 1.14 for SSS-H(2) and 1.17 for SPP-H(2). A shift from SPP-H(2) to WS-H(2) would therefore not affect the ER and GHG emissions of these BioH(2) pathways. When co-product was considered, a shift from SPP-H(2) to WS-H(2) or SSS-H(2) decreased the ER, while increasing the GHG emissions significantly. Co-product yield should be considered when selecting BioH(2) feedstocks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Elsevier BV Authors: Ranjan Parajuli; Marie Trydeman Knudsen; Morten Birkved; Sylvestre Njakou Djomo; +2 AuthorsRanjan Parajuli; Marie Trydeman Knudsen; Morten Birkved; Sylvestre Njakou Djomo; Andrea Corona; Tommy Dalgaard;pmid: 28448939
This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJEtOH+1kgLA", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP100), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C5 sugar to boost bioethanol yield and that the use of residual streams in the energy conversion were beneficial for optimizing the system performance.
The Science of The T... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyThe Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert The Science of The T... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyThe Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2013 BelgiumPublisher:Elsevier BV Funded by:EC | POPFULL, EC | GHG-POPFULLEC| POPFULL ,EC| GHG-POPFULLS. Njakou Djomo; O. El Kasmioui; T. De Groote; L.S. Broeckx; M.S. Verlinden; G. Berhongaray; R. Fichot; D. Zona; S.Y. Dillen; J.S. King; I.A. Janssens; R. Ceulemans;handle: 10067/1093050151162165141
AbstractShort-rotation woody crops (SRWCs) are a promising means to enhance the EU renewable energy sources while mitigating greenhouse gas (GHG) emissions. However, there are concerns that the GHG mitigation potential of bioelectricity may be nullified due to GHG emissions from direct land use changes (dLUCs). In order to evaluate quantitatively the GHG mitigation potential of bioelectricity from SRWC we managed an operational SRWC plantation (18.4ha) for bioelectricity production on a former agricultural land without supplemental irrigation or fertilization. We traced back to the primary energy level all farm labor, materials, and fossil fuel inputs to the bioelectricity production. We also sampled soil carbon and monitored fluxes of GHGs between the SRWC plantation and the atmosphere. We found that bioelectricity from SRWCs was energy efficient and yielded 200–227% more energy than required to produce it over a two-year rotation. The associated land requirement was 0.9m2kWhe-1 for the gasification and 1.1m2kWhe-1 for the combustion technology. Converting agricultural land into the SRWC plantation released 2.8 ± 0.2tCO2eha−1, which represented ∼89% of the total GHG emissions (256–272gCO2ekWhe-1) of bioelectricity production. Despite its high share of the total GHG emissions, dLUC did not negate the GHG benefits of bioelectricity. Indeed, the GHG savings of bioelectricity relative to the EU non-renewable grid mix power ranged between 52% and 54%. SRWC on agricultural lands with low soil organic carbon stocks are encouraging prospects for sustainable production of renewable energy with significant climate benefits.
Applied Energy arrow_drop_down http://dx.doi.org/10.1016/j.ap...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Applied Energy arrow_drop_down http://dx.doi.org/10.1016/j.ap...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Elsevier BV Authors: Henrik Thers; Sylvestre Njakou Djomo; Lars Elsgaard; Marie Trydeman Knudsen;pmid: 30928748
Winter oilseed rape (WOSR) is the main crop for biodiesel in the EU, where legislation demands at least 50% savings in greenhouse gas (GHG) emissions as compared to fossil diesel. Thus industrial sectors search for optimized management systems to lower GHG emissions from oilseed rape cultivation. Recently, pyrolysis of biomass with subsequent soil amendment of biochar has shown potentials for GHG mitigation in terms of carbon (C) sequestration, avoidance of fossil based electricity, and mitigation of soil nitrous oxide (N2O) emissions. Here we analyzed three WOSR scenarios in terms of their global warming impact using a life cycle assessment approach. The first was a reference scenario with average Danish WOSR cultivation where straw residues were incorporated to the soil. The others were biochar scenarios in which the oilseed rape straw was pyrolysed to biochar at two process temperatures (400 and 800 °C) and returned to the field. The concept of avoided atmospheric CO2 load was applied for calculation of C sequestration factors for biochar, which resulted in larger mitigation effects than derived from calculations of just the remaining C in soil. In total, GHG emissions were reduced by 73 to 83% in the two biochar scenarios as compared to the reference scenario, mainly due to increased C sequestration. The climate benefits were higher for pyrolysis of oilseed rape straw at 800 than at 400 °C. The results demonstrated that biochar has a potential to improve the life cycle GHG emissions of oilseed rape biodiesel, and highlighted the importance of consolidated key assumptions, such as biochar stability in soil and the CO2 load of marginal grid electricity.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2019 DenmarkPublisher:Zenodo Funded by:EC | SABIREC| SABIRAuthors: Timma, Lelde; Njakou Djomo, Sylvestre; Trydeman Knudsen, Marie;Since the land use and land use changes is much debated issue regarding sustainability of biorefineries. The aim of the research is to compare the impacts created from biorefinery process in the case land use is accounted in dynamic manner and to compare obtained impacts with “classical” LCA approach.In this study the modelling approach used will include coupling of life cycle assessment (LCA) with system dynamics methodology. System dynamics methodology would enrich possibilities of LCA, since this tool depicts interrelations of components in the systems studied.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Conference object . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Conference object . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
