Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
34 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhiyuan Cong; Zhiyuan Cong; Pingqing Fu; Mark Loewen; +8 Authors

    Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shichang Kang; Min Xu; Min Xu; Hao Wu;

    AbstractThe Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hydrological Process...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hydrological Processes
    Article . 2017 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hydrological Process...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hydrological Processes
      Article . 2017 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ganesh Ram Shrestha; Justin Ellis; Justin Ellis; Yanju Chen; +12 Authors

    Traditional biomass stoves are a major global contributor to emissions that impact climate change and health. This paper reports emission factors of particulate matter (PM2.5), carbon monoxide (CO), organic carbon (OC), black carbon (EC), optical absorption, and scattering from 46 South Asian, 48 Tibetan, and 4 Ugandan stoves. These measurements plus a literature review provide insight into the robustness of emission factors used in emission inventories. Tibetan dung stoves produced high average PM2.5 emission factors (23 and 43 gkg-1 for chimney and open stoves) with low average EC (0.3 and 0.7 gkg-1, respectively). Comparatively, PM2.5 from South Asian stoves (7 gkg-1) was in the range of previous measurements and near values used in inventories. EC emission factors varied between stoves and fuels ( p < 0.001), without corresponding differences in absorption; stoves that produced little EC, produced enough brown carbon to have about the same absorption as stoves with high EC emissions. In Tibetan dung stoves, for example, OC contributed over 20% of the absorption. Overall, EC emission factors were not correlated with PM2.5 and were constrained to low values, relative to PM2.5, over a wide range of combustion conditions. The average measured EC emission factor (1 gkg-1), was near current inventory estimates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2019 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2019 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xing Diao; David Widory; Kirpa Ram; Enzai Du; +8 Authors

    Atmospheric phosphorus is a vital nutrient for ecosystems whose sources and fate are still debated in the fragile Himalayan region, hindering our comprehension of its local ecological impact. This study provides novel insights into atmospheric phosphorus based on the study of total suspended particulate matter at the Qomolangma station. Contrary to the prevailing assumptions, we show that biomass burning (BB), not mineral dust, dominates total dissolved phosphorus (TDP, bioavailable) deposition in this arid region, especially during spring. While total phosphorus is mainly derived from dust (77% annually), TDP is largely affected by the transport of regional biomass-burning plumes from South Asia. During BB pollution episodes, TDP causing springtime TDP fluxes alone accounts for 43% of the annual budget. This suggests that BB outweighs dust in supplying bioavailable phosphorus, a critical nutrient, required to sustain Himalayas' ecological functions. Overall, this first-hand field evidence refines the regional and global phosphorus budget by demonstrating that BB emission, while still unrecognized, is a significant source of P, even in the remote mountains of the Himalayas. It also reveals the heterogeneity of atmospheric phosphorus deposition in that region, which will help predict changes in the impacted ecosystems as the deposition patterns vary.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2023 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2023 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nianzhi Jiao; John C. Priscu; Tandong Yao; Qun Gao; +11 Authors

    SummaryClimate change and anthropogenic factors can alter biodiversity and can lead to changes in community structure and function. Despite the potential impacts, no long‐term records of climatic influences on microbial communities exist. The Tibetan Plateau is a highly sensitive region that is currently undergoing significant alteration resulting from both climate change and increased human activity. Ice cores from glaciers in this region serve as unique natural archives of bacterial abundance and community composition, and contain concomitant records of climate and environmental change. We report high‐resolution profiles of bacterial density and community composition over the past half century in ice cores from three glaciers on the Tibetan Plateau. Statistical analysis showed that the bacterial community composition in the three ice cores converged starting in the 1990s. Changes in bacterial community composition were related to changing precipitation, increasing air temperature and anthropogenic activities in the vicinity of the plateau. Collectively, our ice core data on bacteria in concert with environmental and anthropogenic proxies indicate that the convergence of bacterial communities deposited on glaciers across a wide geographical area and situated in diverse habitat types was likely induced by climatic and anthropogenic drivers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Microb...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Microbiology
    Article . 2015 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Microb...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Microbiology
      Article . 2015 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaobo He; Shaopeng Gao; Fangping Yan; Pengfei Chen; +5 Authors

    Carbonaceous matter has an important impact on glacial retreat in the Tibetan Plateau, further affecting the water resource supply. However, the related studies on carbonaceous matter are still scarce in Geladaindong (GLDD) region, the source of the Yangtze River. Therefore, the concentration, source and variations of carbonaceous matter at Ganglongjiama (GLJM) glacier in GLDD region were investigated during the melting period in 2017, which could deepen our understanding on carbonaceous matter contribution to glacier melting. The results showed that dissolved organic carbon (DOC) concentration of snowpit samples (283 ± 200 μg/L) was much lower than that of precipitation samples (624 ± 361 μg/L), indicating that large parts of DOC could be rapidly leached from the snowpit during the melting process. In contrast, refractory black carbon (rBC) concentration measured by Single Particle Soot Photometer of snowpit samples (4.27 ± 3.15 μg/L) was much higher than that of precipitation samples (0.97 ± 0.49 μg/L). Similarly, DOC with high mass absorption cross-section measured at 365 nm value was also likely to enrich in snowpit during the melting process. In addition, it was found that both rBC and DOC with high light-absorbing ability began to leach from the snowpit when melting process became stronger. Therefore, rBC and DOC with high light-absorbing ability exhibited similar behavior during the melting process. Based on relationship among DOC, rBC and K+ in precipitation, the main source of carbonaceous matter in GLJM glacier was biomass burning during the study period.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Sciences
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Sciences
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jiajia Gao; Wei Luo; Lan Xu; Qianggong Zhang; +5 Authors

    To understand distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Himalayas, 77 soil samples were collected from the northern side of the Himalayas, China (NSHC), and the southern side of the Himalayas, Nepal (SSHN), based on altitude, land use and possible trans-boundary transport of PAHs driven by wind from Nepal to the Tibetan Plateau, China. Soils from the SSHN had mean PAH concentration greater than those from the NSHC. Greater concentrations of PAHs in soils were mainly distributed near main roads and agricultural and urban areas. PAHs with 2-3 rings were the most abundant PAHs in the soils from the Himalayas. Concentrations of volatile PAHs were significantly and positively correlated with altitude. Simulations of trajectories of air masses indicated that distributions of soil PAH concentrations were associated with the cyclic patterns of the monsoon. PAH emissions from traffic and combustion of biomass or coal greatly contributed to concentrations of PAHs in soils from the Himalayas.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Pollut...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Pollution
    Article
    License: CC BY ND SA
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Pollut...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Pollution
      Article
      License: CC BY ND SA
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lekhendra Tripathee; Kirpa Ram; Pengfei Chen; Qianggong Zhang; +8 Authors

    This study presents a comprehensive analysis of organic carbon (OC), elemental carbon (EC), and particularly the light absorption characteristics of EC and water-soluble brown carbon (WS-BrC) in total suspended particles in the Kathmandu Valley from April 2013 to January 2018. The mean OC, EC, and water-soluble organic carbon (WSOC) concentrations were 34.8 ± 27.1, 9.9 ± 5.8, and 17.4 ± 12.5 μg m-3, respectively. A clear seasonal variation was observed for all carbonaceous components with higher concentrations occurring during colder months and lower concentrations in the monsoon season. The relatively low OC/EC ratio (3.6 ± 2.0) indicates fossil fuel combustion as the primary source of carbonaceous components. The optical attenuation (ATN) at 632 nm was significantly connected with EC loading (ECS) below 15 μg cm-2 but ceased as ECS increased, reflecting the increased influence of the shadowing effect. The derived average mass absorption cross-section of EC (MACEC) (7.0 ± 4.2 m2 g-1) is comparable to that of freshly emitted EC particles, further attesting that EC was mainly produced from local sources with minimal atmospheric aging processes. Relatively intensive coating with organic aerosols and/or salts (e.g., sulfate, nitrate) was probably the reason for the slightly higher MACEC during the monsoon season, whereas increased biomass burning was a major factor leading to lower MACEC in other seasons. The average MACWS-BrC at 365 nm was 1.4 ± 0.3 m2 g-1 with minimal seasonal variations. In contrast to MACEC, biomass burning was the main reason for a higher MACWS-BrC in the non-monsoon season. The relative light absorption contribution of WS-BrC to EC was 9.9% over the 300-700 nm wavelength range, with a slightly higher ratio (13.6%) in the pre-monsoon season. Therefore, both EC and WS-BrC should be considered in the study of optical properties and radiative forcing of carbonaceous aerosols in this region.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Huijun Zheng; Xin Wan; Shichang Kang; Pengfei Chen; +3 Authors

    Organic aerosols have profound and far-reaching influences on the Earth's climate, ecosystems, environmental quality, and public health. Elucidating the precise composition and sources of these aerosols over the Tibetan Plateau, a region highly sensitive to climate change and vulnerable to ecosystems, is critically important. Sixteen organic molecular tracers in aerosols were quantified using solvent extraction-BSTFA derivatization, and GC/MS analysis at six sites over the Tibetan Plateau during 2014 and 2016. Average total tracer concentration was 32.5 ± 20.1 ng m-3. The highest levels of biomass burning tracers (anhydrosugars and aromatic acids) were found at southeastern Tibetan Plateau site Yulong (20.8 ± 21.3 ng m-3) followed by the western site Ngari (13.3 ± 10.6 ng m-3). Biomass burning tracers decreased from southern sites like Everest (9.50 ± 10.5 ng m-3) to northern aeras such as Laohugou (2.59 ± 2.19 ng m-3). Biomass burning tracers peaked in non-monsoon seasons while primary saccharides and sugar alcohols predominated during monsoon months. Using tracer-based methods, biomass burning contributed 0.4%-8.4% of organic carbon over the plateau, with higher non-monsoon contributions (3.6% ± 3.7%). Backward air mass trajectories and fire spots indicated South Asian biomass burning impacts on organic aerosols at western, southern, and southeastern Tibetan Plateau sites, particularly in non-monsoon periods. Fungal spores and plant debris comprised 0.6%-6.3% and 0.3%-1.2% of organic carbon respectively, with higher monsoon contributions (4.2% ± 4.7%) of fungal spores. Secondary organic carbon was estimated to contribute substantially (45.5%-73.5%) over the plateau but requires further investigation. These results provide insights into pollution mitigation and the assessments of climate and ecology changes for the Tibetan Plateau.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Yulan Zhang; Zhuangzhuang Wang; Tanguang Gao; Da Wei; +3 Authors

    High Mountain Asia glaciers are currently ignored in the estimation of global greenhouse gas budgets (e.g., methane (CH4) and carbon dioxide (CO2)). Similar to the Asian Water Tower and Third Pole, the Tibetan Plateau (TP) hosts the largest volume of glaciers outside the polar regions. These glaciers contain large reservoirs of organic carbon that can influence glacial ecosystems under rapid melting. However, no data exist on the current footprint of CH4 and CO2 from glaciers in the TP. Here, we report in situ observations of CH4 and CO2 fluxes for glacial cryoconite holes, subglacial sediments, and proglacial river runoff across the TP. Our results indicate that cryoconite holes and subglacial sediments can accelerate the export of greenhouse gasses during the melting season due to intensive glacier melting. However, to some extent, proglacial river runoff can be a significant sink of atmospheric CO2; this fact was not identified in previous studies. Our findings suggest that variations (source or sink) of greenhouse gasses from TP glacial basins should be considered in regional CH4 and CO2 budgets under climate warming.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fundamental Researcharrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fundamental Research
    Article . 2021 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fundamental Research
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fundamental Research
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fundamental Researcharrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fundamental Research
      Article . 2021 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fundamental Research
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fundamental Research
      Article . 2021
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
34 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhiyuan Cong; Zhiyuan Cong; Pingqing Fu; Mark Loewen; +8 Authors

    Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shichang Kang; Min Xu; Min Xu; Hao Wu;

    AbstractThe Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hydrological Process...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hydrological Processes
    Article . 2017 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hydrological Process...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hydrological Processes
      Article . 2017 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ganesh Ram Shrestha; Justin Ellis; Justin Ellis; Yanju Chen; +12 Authors

    Traditional biomass stoves are a major global contributor to emissions that impact climate change and health. This paper reports emission factors of particulate matter (PM2.5), carbon monoxide (CO), organic carbon (OC), black carbon (EC), optical absorption, and scattering from 46 South Asian, 48 Tibetan, and 4 Ugandan stoves. These measurements plus a literature review provide insight into the robustness of emission factors used in emission inventories. Tibetan dung stoves produced high average PM2.5 emission factors (23 and 43 gkg-1 for chimney and open stoves) with low average EC (0.3 and 0.7 gkg-1, respectively). Comparatively, PM2.5 from South Asian stoves (7 gkg-1) was in the range of previous measurements and near values used in inventories. EC emission factors varied between stoves and fuels ( p < 0.001), without corresponding differences in absorption; stoves that produced little EC, produced enough brown carbon to have about the same absorption as stoves with high EC emissions. In Tibetan dung stoves, for example, OC contributed over 20% of the absorption. Overall, EC emission factors were not correlated with PM2.5 and were constrained to low values, relative to PM2.5, over a wide range of combustion conditions. The average measured EC emission factor (1 gkg-1), was near current inventory estimates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2019 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2019 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xing Diao; David Widory; Kirpa Ram; Enzai Du; +8 Authors

    Atmospheric phosphorus is a vital nutrient for ecosystems whose sources and fate are still debated in the fragile Himalayan region, hindering our comprehension of its local ecological impact. This study provides novel insights into atmospheric phosphorus based on the study of total suspended particulate matter at the Qomolangma station. Contrary to the prevailing assumptions, we show that biomass burning (BB), not mineral dust, dominates total dissolved phosphorus (TDP, bioavailable) deposition in this arid region, especially during spring. While total phosphorus is mainly derived from dust (77% annually), TDP is largely affected by the transport of regional biomass-burning plumes from South Asia. During BB pollution episodes, TDP causing springtime TDP fluxes alone accounts for 43% of the annual budget. This suggests that BB outweighs dust in supplying bioavailable phosphorus, a critical nutrient, required to sustain Himalayas' ecological functions. Overall, this first-hand field evidence refines the regional and global phosphorus budget by demonstrating that BB emission, while still unrecognized, is a significant source of P, even in the remote mountains of the Himalayas. It also reveals the heterogeneity of atmospheric phosphorus deposition in that region, which will help predict changes in the impacted ecosystems as the deposition patterns vary.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2023 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Technology
      Article . 2023 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nianzhi Jiao; John C. Priscu; Tandong Yao; Qun Gao; +11 Authors

    SummaryClimate change and anthropogenic factors can alter biodiversity and can lead to changes in community structure and function. Despite the potential impacts, no long‐term records of climatic influences on microbial communities exist. The Tibetan Plateau is a highly sensitive region that is currently undergoing significant alteration resulting from both climate change and increased human activity. Ice cores from glaciers in this region serve as unique natural archives of bacterial abundance and community composition, and contain concomitant records of climate and environmental change. We report high‐resolution profiles of bacterial density and community composition over the past half century in ice cores from three glaciers on the Tibetan Plateau. Statistical analysis showed that the bacterial community composition in the three ice cores converged starting in the 1990s. Changes in bacterial community composition were related to changing precipitation, increasing air temperature and anthropogenic activities in the vicinity of the plateau. Collectively, our ice core data on bacteria in concert with environmental and anthropogenic proxies indicate that the convergence of bacterial communities deposited on glaciers across a wide geographical area and situated in diverse habitat types was likely induced by climatic and anthropogenic drivers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Microb...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Microbiology
    Article . 2015 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Microb...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Microbiology
      Article . 2015 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaobo He; Shaopeng Gao; Fangping Yan; Pengfei Chen; +5 Authors

    Carbonaceous matter has an important impact on glacial retreat in the Tibetan Plateau, further affecting the water resource supply. However, the related studies on carbonaceous matter are still scarce in Geladaindong (GLDD) region, the source of the Yangtze River. Therefore, the concentration, source and variations of carbonaceous matter at Ganglongjiama (GLJM) glacier in GLDD region were investigated during the melting period in 2017, which could deepen our understanding on carbonaceous matter contribution to glacier melting. The results showed that dissolved organic carbon (DOC) concentration of snowpit samples (283 ± 200 μg/L) was much lower than that of precipitation samples (624 ± 361 μg/L), indicating that large parts of DOC could be rapidly leached from the snowpit during the melting process. In contrast, refractory black carbon (rBC) concentration measured by Single Particle Soot Photometer of snowpit samples (4.27 ± 3.15 μg/L) was much higher than that of precipitation samples (0.97 ± 0.49 μg/L). Similarly, DOC with high mass absorption cross-section measured at 365 nm value was also likely to enrich in snowpit during the melting process. In addition, it was found that both rBC and DOC with high light-absorbing ability began to leach from the snowpit when melting process became stronger. Therefore, rBC and DOC with high light-absorbing ability exhibited similar behavior during the melting process. Based on relationship among DOC, rBC and K+ in precipitation, the main source of carbonaceous matter in GLJM glacier was biomass burning during the study period.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Sciences
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Sciences
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jiajia Gao; Wei Luo; Lan Xu; Qianggong Zhang; +5 Authors

    To understand distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Himalayas, 77 soil samples were collected from the northern side of the Himalayas, China (NSHC), and the southern side of the Himalayas, Nepal (SSHN), based on altitude, land use and possible trans-boundary transport of PAHs driven by wind from Nepal to the Tibetan Plateau, China. Soils from the SSHN had mean PAH concentration greater than those from the NSHC. Greater concentrations of PAHs in soils were mainly distributed near main roads and agricultural and urban areas. PAHs with 2-3 rings were the most abundant PAHs in the soils from the Himalayas. Concentrations of volatile PAHs were significantly and positively correlated with altitude. Simulations of trajectories of air masses indicated that distributions of soil PAH concentrations were associated with the cyclic patterns of the monsoon. PAH emissions from traffic and combustion of biomass or coal greatly contributed to concentrations of PAHs in soils from the Himalayas.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Pollut...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Pollution
    Article
    License: CC BY ND SA
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Pollut...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Pollution
      Article
      License: CC BY ND SA
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lekhendra Tripathee; Kirpa Ram; Pengfei Chen; Qianggong Zhang; +8 Authors

    This study presents a comprehensive analysis of organic carbon (OC), elemental carbon (EC), and particularly the light absorption characteristics of EC and water-soluble brown carbon (WS-BrC) in total suspended particles in the Kathmandu Valley from April 2013 to January 2018. The mean OC, EC, and water-soluble organic carbon (WSOC) concentrations were 34.8 ± 27.1, 9.9 ± 5.8, and 17.4 ± 12.5 μg m-3, respectively. A clear seasonal variation was observed for all carbonaceous components with higher concentrations occurring during colder months and lower concentrations in the monsoon season. The relatively low OC/EC ratio (3.6 ± 2.0) indicates fossil fuel combustion as the primary source of carbonaceous components. The optical attenuation (ATN) at 632 nm was significantly connected with EC loading (ECS) below 15 μg cm-2 but ceased as ECS increased, reflecting the increased influence of the shadowing effect. The derived average mass absorption cross-section of EC (MACEC) (7.0 ± 4.2 m2 g-1) is comparable to that of freshly emitted EC particles, further attesting that EC was mainly produced from local sources with minimal atmospheric aging processes. Relatively intensive coating with organic aerosols and/or salts (e.g., sulfate, nitrate) was probably the reason for the slightly higher MACEC during the monsoon season, whereas increased biomass burning was a major factor leading to lower MACEC in other seasons. The average MACWS-BrC at 365 nm was 1.4 ± 0.3 m2 g-1 with minimal seasonal variations. In contrast to MACEC, biomass burning was the main reason for a higher MACWS-BrC in the non-monsoon season. The relative light absorption contribution of WS-BrC to EC was 9.9% over the 300-700 nm wavelength range, with a slightly higher ratio (13.6%) in the pre-monsoon season. Therefore, both EC and WS-BrC should be considered in the study of optical properties and radiative forcing of carbonaceous aerosols in this region.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Huijun Zheng; Xin Wan; Shichang Kang; Pengfei Chen; +3 Authors

    Organic aerosols have profound and far-reaching influences on the Earth's climate, ecosystems, environmental quality, and public health. Elucidating the precise composition and sources of these aerosols over the Tibetan Plateau, a region highly sensitive to climate change and vulnerable to ecosystems, is critically important. Sixteen organic molecular tracers in aerosols were quantified using solvent extraction-BSTFA derivatization, and GC/MS analysis at six sites over the Tibetan Plateau during 2014 and 2016. Average total tracer concentration was 32.5 ± 20.1 ng m-3. The highest levels of biomass burning tracers (anhydrosugars and aromatic acids) were found at southeastern Tibetan Plateau site Yulong (20.8 ± 21.3 ng m-3) followed by the western site Ngari (13.3 ± 10.6 ng m-3). Biomass burning tracers decreased from southern sites like Everest (9.50 ± 10.5 ng m-3) to northern aeras such as Laohugou (2.59 ± 2.19 ng m-3). Biomass burning tracers peaked in non-monsoon seasons while primary saccharides and sugar alcohols predominated during monsoon months. Using tracer-based methods, biomass burning contributed 0.4%-8.4% of organic carbon over the plateau, with higher non-monsoon contributions (3.6% ± 3.7%). Backward air mass trajectories and fire spots indicated South Asian biomass burning impacts on organic aerosols at western, southern, and southeastern Tibetan Plateau sites, particularly in non-monsoon periods. Fungal spores and plant debris comprised 0.6%-6.3% and 0.3%-1.2% of organic carbon respectively, with higher monsoon contributions (4.2% ± 4.7%) of fungal spores. Secondary organic carbon was estimated to contribute substantially (45.5%-73.5%) over the plateau but requires further investigation. These results provide insights into pollution mitigation and the assessments of climate and ecology changes for the Tibetan Plateau.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Yulan Zhang; Zhuangzhuang Wang; Tanguang Gao; Da Wei; +3 Authors

    High Mountain Asia glaciers are currently ignored in the estimation of global greenhouse gas budgets (e.g., methane (CH4) and carbon dioxide (CO2)). Similar to the Asian Water Tower and Third Pole, the Tibetan Plateau (TP) hosts the largest volume of glaciers outside the polar regions. These glaciers contain large reservoirs of organic carbon that can influence glacial ecosystems under rapid melting. However, no data exist on the current footprint of CH4 and CO2 from glaciers in the TP. Here, we report in situ observations of CH4 and CO2 fluxes for glacial cryoconite holes, subglacial sediments, and proglacial river runoff across the TP. Our results indicate that cryoconite holes and subglacial sediments can accelerate the export of greenhouse gasses during the melting season due to intensive glacier melting. However, to some extent, proglacial river runoff can be a significant sink of atmospheric CO2; this fact was not identified in previous studies. Our findings suggest that variations (source or sink) of greenhouse gasses from TP glacial basins should be considered in regional CH4 and CO2 budgets under climate warming.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fundamental Researcharrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fundamental Research
    Article . 2021 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fundamental Research
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fundamental Research
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fundamental Researcharrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fundamental Research
      Article . 2021 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fundamental Research
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fundamental Research
      Article . 2021
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right
Powered by OpenAIRE graph