- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:UKRI | Smart and high-efficient ...UKRI| Smart and high-efficient technologies for fruits and vegetable production in greenhouse and plant factoryMd Mijanur Rahman; Mohammad Shakeri; Sieh Kiong Tiong; Fatema Khatun; Nowshad Amin; Jagadeesh Pasupuleti; Mohammad Kamrul Hasan;doi: 10.3390/su13042393
This paper presents a comprehensive review of machine learning (ML) based approaches, especially artificial neural networks (ANNs) in time series data prediction problems. According to literature, around 80% of the world’s total energy demand is supplied either through fuel-based sources such as oil, gas, and coal or through nuclear-based sources. Literature also shows that a shortage of fossil fuels is inevitable and the world will face this problem sooner or later. Moreover, the remote and rural areas that suffer from not being able to reach traditional grid power electricity need alternative sources of energy. A “hybrid-renewable-energy system” (HRES) involving different renewable resources can be used to supply sustainable power in these areas. The uncertain nature of renewable energy resources and the intelligent ability of the neural network approach to process complex time series inputs have inspired the use of ANN methods in renewable energy forecasting. Thus, this study aims to study the different data driven models of ANN approaches that can provide accurate predictions of renewable energy, like solar, wind, or hydro-power generation. Various refinement architectures of neural networks, such as “multi-layer perception” (MLP), “recurrent-neural network” (RNN), and “convolutional-neural network” (CNN), as well as “long-short-term memory” (LSTM) models, have been offered in the applications of renewable energy forecasting. These models are able to perform short-term time-series prediction in renewable energy sources and to use prior information that influences its value in future prediction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Mahmuda Khatun Mishu; Md. Rokonuzzaman; Jagadeesh Pasupuleti; Mohammad Shakeri; Kazi Sajedur Rahman; Fazrena Azlee Hamid; Sieh Kiong Tiong; Nowshad Amin;In the past few years, the internet of things (IoT) has garnered a lot of attention owing to its significant deployment for fulfilling the global demand. It has been seen that power-efficient devices such as sensors and IoT play a significant role in our regular lives. However, the popularity of IoT sensors and low-power electronic devices is limited due to the lower lifetime of various energy resources which are needed for powering the sensors over time. For overcoming this issue, it is important to design and develop better, high-performing, and effective energy harvesting systems. In this article, different types of ambient energy harvesting systems which can power IoT-enabled sensors, as well as wireless sensor networks (WSNs), are reviewed. Various energy harvesting models which can increase the sustainability of the energy supply required for IoT devices are also discussed. Furthermore, the challenges which need to be overcome to make IoT-enabled sensors more durable, reliable, energy-efficient, and economical are identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics9091345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics9091345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 MalaysiaPublisher:MDPI AG Mohammad Taghi Shakeri; Jagadeesh Pasupuleti; Nowshad Amin; Md. Rokonuzzaman; Foo Wah Low; Chong Tak Yaw; Nilofar Asim; Nurul Asma Samsudin; Sieh Kiong Tiong; Chong Kok Hen; Chin Wei Lai;Electricity demand is increasing, as a result of increasing consumers in the electricity market. By growing smart technologies such as smart grid and smart energy management systems, customers were given a chance to actively participate in demand response programs (DRPs), and reduce their electricity bills as a result. This study overviews the DRPs and their practices, along with home energy management systems (HEMS) and load management techniques. The paper provides brief literature on HEMS technologies and challenges. The paper is organized in a way to provide some technical information about DRPs and HEMS to help the reader understand different concepts about the smart grid, and be able to compare the essential concerns about the smart grid. The article includes a brief discussion about DRPs and their importance for the future of energy management systems. It is followed by brief literature about smart grids and HEMS, and a home energy management system strategy is also discussed in detail. The literature shows that storage devices have a huge impact on the efficiency and performance of energy management system strategies.
Energies arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Chila Kaewpraek; Liaqat Ali; Md. Arefin Rahman; Mohammad Shakeri; M. S. Chowdhury; M. S. Jamal; Md. Shahin Mia; Jagadeesh Pasupuleti; Le Khac Dong; Kuaanan Techato;doi: 10.3390/su13084505
The rapid rise in the number of fossil fuel uses over the last few decades has increased carbon dioxide (CO2) emissions. The purpose of implementing renewable energy solutions, such as solar, hydro, wind, biomass, and other renewable energy sources, is to mitigate global climate change worldwide. Solar energy has received more attention over the last few decades as an alternative source of energy, and it can play an essential role in the future of the energy industry. This is especially true of energy solutions that reduce land use, such as off-grid and on-grid solar rooftop technologies. This study aims to evaluate the energy conversion efficiency of photovoltaic (PV) systems in tropical environments. It also explores the effect of growing plants beneath PV panels. Two identical grid-connected PV systems—each containing five solar panels—were installed. The overall power production of each PV system was about 1.4 kWp. All the collected data were processed and analysed in the same way and by the same method. The PV systems were installed in two different environments—one with the possibility of growing the plants beneath the PV panels (PViGR module) and one with no possibility of growing the plants beneath the PV panels (PViSR module). The experiments were conducted in the Bo Yang District of Songkhla, Thailand over a 12-month period. Our findings indicate that green roof photovoltaic (GRPV) systems can produce around 2100 kWh of electricity in comparison to the 2000 kWh produced by other solar energy systems. Thereby, growing plants beneath PV panels increases electricity production efficiency by around 2%. This difference comes from the growing of plants underneath GRPV systems. Plants do not only help to trap humidity underneath GRPV systems but also help to cool the PV panels by absorbing the temperature beneath GRPV systems. Thus, in the production of electrical energy; the system was clearly showing significant differences in the mentioned results of both PV solar systems, which are evident for great energy efficiency performances in the future.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4505/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4505/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Nowshad Amin; Badariah Bais; Mohsen Shayestegan; Md. Akhtaruzzaman; Kamaruzzaman Sopian; Hamza Abunima; Mohammad Shakeri; Selim Reza; Sohif Mat;Abstract Research interests on various scientific aspects of photovoltaic (PV) systems has increased over the past decade. However, these systems are still undergoing further developments, and new designs are being demonstrated every year. To minimize cost, reduce size, and increase the efficiency of PV systems, the use of transformerless PV grid-connected inverters has gained the interest of the residential market. This study describes the main challenges in transformerless topologies as well as provides a review on new single-phase grid-connected PV systems, which are categorized into six groups based on the number of switches required in the system. The basic operational principles of various schemes under the six categories of inverters are presented and compared in terms of leakage current, efficiency, strengths and weaknesses. Furthermore, the proposed inverter structure and a compensation strategy for eliminating leakage current have been discussed followed by a comparative study with the available ones. Consequently, our proposed system has found noteworthy results in PSIM environment with a reduction in leakage current as compared with those in three other different topologies.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.09.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.09.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Jane Rose Atwongyeire; Arkom Palamanit; Adul Bennui; Mohammad Shakeri; Kuaanan Techato; Shahid Ali;doi: 10.3390/en15041595
handle: 10072/419294
This study assessed suitable smart grid areas for power generation and distribution from solar and small hydro energy resources in Western Uganda by employing the fuzzy analytic hierarchy process (AHP) based on geographic information system (GIS) data. This was performed based on the selected economic, environmental, and technical criteria by the authors guided by the experts’ judgements in the weighing process. The main criteria also included various sub-criteria. The sub-criteria of the economic criterion included distance from transmission lines, topography, and distance to roads. The environmental sub-criteria covered land use, sensitive areas, and protected areas. The technical sub-criteria were on distance from demand centers, available potential energy resources (solar and hydro), and climate (rainfall and sunshine). The weights of the main criteria and the sub-criteria were calculated by using the fuzzy AHP. These weights were then used in the GIS environment to determine both the potential for power generation from the solar energy resource and the smart grid suitable areas. According to the weight results, the economic criteria has the highest weight, followed by environmental and technical criteria. The validation of the experts’ judgements for each criterion by comparing the results from fuzzy AHP with AHP confirmed insignificant differences in weights for all criteria. The obtained suitable smart grid areas in Western Uganda have been classified into three parts, that is, the South, North, and Central. Therefore, this is a one-of-a-kind study that, in the authors’ view, will provide the initial insights to the government, policymakers, renewable energy practitioners, and researchers to investigate, map, and embrace decarbonization strategies for the electricity sector of Uganda.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1595/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/419294Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1595/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/419294Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 MalaysiaPublisher:MDPI AG Mohammad Shakeri; Nowshad Amin; Jagadeesh Pasupuleti; Abolfazl Mehbodniya; Nilofar Asim; Sieh Kiong Tiong; Foo Wah Low; Chong Tak Yaw; Nurul Asma Samsudin; Md Rokonuzzaman; Chong Kok Hen; Chin Wei Lai;doi: 10.3390/en13133312
With the growth in smart technology, customers have a chance to contribute to demand response programs and reduce their bills of electricity actively. This paper presents an intelligent wireless smart plug demonstration, which is designed to control the electrical appliances in the home energy management system (HEMS) application with a response to the utility company’s signal. Besides, a linear model of an energy management system utilizing a dynamic priority for electrical appliances is used as an energy management strategy. This can be useful for decreasing energy consumption in peak hours. Proposed hardware is tested with two different price strategies such as real-time pricing and a combination of this and incremental block rate (IBR) pricing. A small one-story house with ordinary electrical appliances is used as a test-bed for the proposed hardware and strategy. Initial results show that intelligent plugs can decrease the energy cost by 9% per day with an effective peak-to-average ratio deduction compared to the domicile without deploying intelligent plugs and controllers.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Md. Rokonuzzaman; Mohammad Shakeri; Fazrena Azlee Hamid; Mahmuda Khatun Mishu; Jagadeesh Pasupuleti; Kazi Sajedur Rahman; Sieh Kiong Tiong; Nowshad Amin;Amid growing demand for solar photovoltaic (PV) energy, the output from PV panels/cells fails to deliver maximum power to the load, due to the intermittency of ambient conditions. Therefore, utilizing maximum power point tracking (MPPT) becomes essential for PV systems. In this paper, a novel internet of things (IoT)-equipped MPPT solar charge controller (SCC) is designed and implemented. The proposed circuit system utilizes IoT-based sensors to send vital data to the cloud for remote monitoring and controlling purposes. The IoT platform helps the system to be monitored remotely. The PIC16F877A is used as a main controller of the proposed MPPT-SCC besides implementing the perturb and observe (P&O) technique and a customized buck–boost converter. To validate the proposed system, both simulation and hardware implementation are carried out by the MATLAB/SIMULINK environment and laboratory set up, respectively. The proposed MPPT-SCC can handle the maximum current of 10 A at 12 V voltage. Results show that the efficiency of the proposed system reaches up to 99.74% during a month of performance testing duration.
Electronics arrow_drop_down ElectronicsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2079-9292/9/8/1267/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics9081267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Electronics arrow_drop_down ElectronicsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2079-9292/9/8/1267/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics9081267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Rajib Baran Roy; Md. Rokonuzzaman; Nowshad Amin; Mahmuda Khatun Mishu; Sanath Alahakoon; Saifur Rahman; Nadarajah Mithulananthan; Kazi Sajedur Rahman; Mohammad Taghi Shakeri; Jagadeesh Pasupuleti;handle: 10919/118473
Dans cet article, des algorithmes de réseau neuronal artificiel (RNA) basés sur Levenberg-Marquardt (LM), la régularisation bayésienne (BR) et le gradient conjugué échelonné (SCG) sont déployés dans la récupération d'énergie du point de puissance maximale (MPPT) dans le système solaire photovoltaïque (PV) pour forger une analyse de performance comparative des trois algorithmes différents. Une analyse comparative entre les algorithmes en termes de performance de traitement de l'ensemble de données formé est présentée. L'environnement Matlab/Simulink est utilisé pour concevoir le système de collecte d'énergie de suivi de point de puissance maximale et la boîte à outils de réseau neuronal artificiel est utilisée pour analyser le modèle développé. Le modèle proposé est formé avec 1000 ensembles de données d'irradiance solaire, de température et de tensions. Soixante-dix pour cent des données sont utilisées pour la formation, tandis que 15% des données sont utilisées pour la validation et 15% des données sont utilisées pour les tests. L'histogramme d'erreur des ensembles de données formés représente zéro erreur dans la phase de formation, de validation et de test de la correspondance des données. La meilleure performance de validation est atteinte à 1000 époques avec une erreur quadratique moyenne presque nulle où l'ensemble de données formé est convergé vers les meilleurs résultats d'entraînement. Selon les résultats, la régression et le gradient sont de 1, 1, 0,99 et 0,000078, 0,0000015739 et 0,26139 pour les algorithmes de Levenberg-Marquardt, de régularisation bayésienne et de gradient conjugué échelonné, respectivement. Les paramètres de quantité de mouvement sont 0,0000001 et 50000 pour les algorithmes de régularisation de Levenberg-Marquardt et Bayesian, respectivement, tandis que l'algorithme Scaled Conjugate Gradient n'a aucun paramètre de quantité de mouvement. L'algorithme Scaled Conjugate Gradient présente de meilleures performances par rapport aux algorithmes de Levenberg-Marquardt et de régularisation bayésienne. Cependant, compte tenu de la formation de l'ensemble de données, de la corrélation entre l'entrée-sortie et l'erreur, l'algorithme de Levenberg-Marquardt est plus performant. En este documento, los algoritmos basados en redes neuronales artificiales (ANN) Levenberg-Marquardt (LM), Regularización Bayesiana (BR) y Gradiente Conjugado Escalado (SCG) se implementan en la recolección de energía de seguimiento de punto de máxima potencia (MPPT) en un sistema solar fotovoltaico (PV) para forjar un análisis de rendimiento comparativo de los tres algoritmos diferentes. Se presenta un análisis comparativo entre los algoritmos en términos del rendimiento del manejo del conjunto de datos entrenado. El entorno MATLAB/Simulink se utiliza para diseñar el sistema de recolección de energía de seguimiento de punto de máxima potencia y la caja de herramientas de red neuronal artificial se utiliza para analizar el modelo desarrollado. El modelo propuesto está entrenado con 1000 conjuntos de datos de irradiancia solar, temperatura y voltajes. Los datos del setenta por ciento se utilizan para la capacitación, mientras que los datos del 15% se emplean para la validación y los datos del 15% se utilizan para las pruebas. El histograma de error de conjuntos de datos entrenados representa un error cero en la fase de entrenamiento, validación y prueba de la coincidencia de datos. El mejor rendimiento de validación se logra en 1000 épocas con un error cuadrático medio casi nulo donde el conjunto de datos entrenados converge a los mejores resultados de entrenamiento. Según los resultados, la regresión y el gradiente son 1, 1, 0.99 y 0.000078, 0.0000015739 y 0.26139 para los algoritmos Levenberg-Marquardt, Bayesian Regularization y Scaled Conjugate Gradient, respectivamente. Los parámetros de momento son 0.0000001 y 50000 para los algoritmos Levenberg-Marquardt y Bayesian Regularization, respectivamente, mientras que el algoritmo Scaled Conjugate Gradient no tiene ningún parámetro de momento. El algoritmo Scaled Conjugate Gradient exhibe un mejor rendimiento en comparación con los algoritmos Levenberg-Marquardt y Bayesian Regularization. Sin embargo, teniendo en cuenta el entrenamiento del conjunto de datos, la correlación entre la entrada-salida y el error, el algoritmo de Levenberg-Marquardt funciona mejor. In this paper, artificial neural network (ANN) based Levenberg-Marquardt (LM), Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) algorithms are deployed in maximum power point tracking (MPPT) energy harvesting in solar photovoltaic (PV) system to forge a comparative performance analysis of the three different algorithms. A comparative analysis among the algorithms in terms of the performance of handling the trained dataset is presented. The MATLAB/Simulink environment is used to design the maximum power point tracking energy harvesting system and the artificial neural network toolbox is utilized to analyze the developed model. The proposed model is trained with 1000 dataset of solar irradiance, temperature, and voltages. Seventy percent data is used for training, while 15% data is employed for validation, and 15% data is utilized for testing. The trained datasets error histogram represents zero error in the training, validation, and test phase of data matching. The best validation performance is attained at 1000 epochs with nearly zero mean squared error where the trained data set is converged to the best training results. According to the results, the regression and gradient are 1, 1, 0.99 and 0.000078, 0.0000015739 and 0.26139 for Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient algorithms, respectively. The momentum parameters are 0.0000001 and 50000 for Levenberg-Marquardt and Bayesian Regularization algorithms, respectively, while the Scaled Conjugate Gradient algorithm does not have any momentum parameter. The Scaled Conjugate Gradient algorithm exhibit better performance compared to Levenberg-Marquardt and Bayesian Regularization algorithms. However, considering the dataset training, the correlation between input-output and error, the Levenberg-Marquardt algorithm performs better. في هذه الورقة، يتم نشر خوارزميات Levenberg - Marquardt (LM) و Bayesian Regularization (BR) و Scaled Conjugate Gradient (SCG) المستندة إلى الشبكة العصبية الاصطناعية (ANN) في حصاد الطاقة الأقصى لتتبع نقاط القدرة (MPPT) في نظام الخلايا الكهروضوئية الشمسية (PV) لصياغة تحليل أداء مقارن للخوارزميات الثلاث المختلفة. يتم تقديم تحليل مقارن بين الخوارزميات من حيث أداء التعامل مع مجموعة البيانات المدربة. يتم استخدام بيئة MATLAB/Simulink لتصميم نظام حصاد الطاقة الأقصى لتتبع نقطة الطاقة ويتم استخدام مجموعة أدوات الشبكة العصبية الاصطناعية لتحليل النموذج المطور. تم تدريب النموذج المقترح على 1000 مجموعة بيانات من الإشعاع الشمسي ودرجة الحرارة والفولتية. يتم استخدام سبعين في المائة من البيانات للتدريب، بينما يتم استخدام 15 ٪ من البيانات للتحقق من صحتها، ويتم استخدام 15 ٪ من البيانات للاختبار. يمثل الرسم البياني لأخطاء مجموعات البيانات المدربة خطأً صفريًا في مرحلة التدريب والتحقق من الصحة والاختبار لمطابقة البيانات. يتم تحقيق أفضل أداء للتحقق في 1000 حقبة مع ما يقرب من الصفر متوسط الخطأ التربيعي حيث يتم تقريب مجموعة البيانات المدربة إلى أفضل نتائج التدريب. وفقًا للنتائج، فإن الانحدار والتدرج هما 1 و 1 و 0.99 و 0.000078 و 0.0000015739 و 0.26139 لخوارزميات Levenberg - Marquardt و Bayesian Regularization و Scaled Conjugate Gradient، على التوالي. معلمات الزخم هي 0.0000001 و 50000 لخوارزميات Levenberg - Marquardt و Bayesian Regularization، على التوالي، في حين أن خوارزمية التدرج المتقارن المقياس لا تحتوي على أي معلمة زخم. تُظهر خوارزمية التدرج المتقارن المقياس أداءً أفضل مقارنة بخوارزميات تنظيم ليفنبرغ- ماركاردت وبايزيان. ومع ذلك، بالنظر إلى تدريب مجموعة البيانات، والارتباط بين المدخلات والمخرجات والخطأ، فإن خوارزمية ليفنبرغ- ماركوارت تؤدي بشكل أفضل.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3096864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3096864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Md. Akhtaruzzaman; Nowshad Amin; Nowshad Amin; Mohsen Shayestegan; Hamza Abunima; Abdulrahman M. Alamoud; Mohammad Shakeri; Kamaruzzaman Sopian; Selim Reza;Abstract The Home Energy Management System (HEMS) is an important part of the smart grid that enables the residential customers to execute demand response programs autonomously. This study presents the outcome of a new system architecture and control algorithm that can use both battery storage and manage the temperature of thermal appliances. The proposed algorithm receives the price information from the utility company in advance and purchases the electricity at off-peak hours and utilizes the battery as well as manages the temperature of the thermal appliances during peak hours. The proposed algorithm assures that the power consumption of the electrical appliances is always less than certain level. The proposed house is supported by the battery system and Photovoltaic system as to increase the green index by utilizing alternative energy resource. The amount of the power that can be drained from the battery is limited by the algorithm to remain more during a day. The simulation results indicate that the proposed system is able to reduce the electricity price up to 20% a day without sacrificing the user’s comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:UKRI | Smart and high-efficient ...UKRI| Smart and high-efficient technologies for fruits and vegetable production in greenhouse and plant factoryMd Mijanur Rahman; Mohammad Shakeri; Sieh Kiong Tiong; Fatema Khatun; Nowshad Amin; Jagadeesh Pasupuleti; Mohammad Kamrul Hasan;doi: 10.3390/su13042393
This paper presents a comprehensive review of machine learning (ML) based approaches, especially artificial neural networks (ANNs) in time series data prediction problems. According to literature, around 80% of the world’s total energy demand is supplied either through fuel-based sources such as oil, gas, and coal or through nuclear-based sources. Literature also shows that a shortage of fossil fuels is inevitable and the world will face this problem sooner or later. Moreover, the remote and rural areas that suffer from not being able to reach traditional grid power electricity need alternative sources of energy. A “hybrid-renewable-energy system” (HRES) involving different renewable resources can be used to supply sustainable power in these areas. The uncertain nature of renewable energy resources and the intelligent ability of the neural network approach to process complex time series inputs have inspired the use of ANN methods in renewable energy forecasting. Thus, this study aims to study the different data driven models of ANN approaches that can provide accurate predictions of renewable energy, like solar, wind, or hydro-power generation. Various refinement architectures of neural networks, such as “multi-layer perception” (MLP), “recurrent-neural network” (RNN), and “convolutional-neural network” (CNN), as well as “long-short-term memory” (LSTM) models, have been offered in the applications of renewable energy forecasting. These models are able to perform short-term time-series prediction in renewable energy sources and to use prior information that influences its value in future prediction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Mahmuda Khatun Mishu; Md. Rokonuzzaman; Jagadeesh Pasupuleti; Mohammad Shakeri; Kazi Sajedur Rahman; Fazrena Azlee Hamid; Sieh Kiong Tiong; Nowshad Amin;In the past few years, the internet of things (IoT) has garnered a lot of attention owing to its significant deployment for fulfilling the global demand. It has been seen that power-efficient devices such as sensors and IoT play a significant role in our regular lives. However, the popularity of IoT sensors and low-power electronic devices is limited due to the lower lifetime of various energy resources which are needed for powering the sensors over time. For overcoming this issue, it is important to design and develop better, high-performing, and effective energy harvesting systems. In this article, different types of ambient energy harvesting systems which can power IoT-enabled sensors, as well as wireless sensor networks (WSNs), are reviewed. Various energy harvesting models which can increase the sustainability of the energy supply required for IoT devices are also discussed. Furthermore, the challenges which need to be overcome to make IoT-enabled sensors more durable, reliable, energy-efficient, and economical are identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics9091345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics9091345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 MalaysiaPublisher:MDPI AG Mohammad Taghi Shakeri; Jagadeesh Pasupuleti; Nowshad Amin; Md. Rokonuzzaman; Foo Wah Low; Chong Tak Yaw; Nilofar Asim; Nurul Asma Samsudin; Sieh Kiong Tiong; Chong Kok Hen; Chin Wei Lai;Electricity demand is increasing, as a result of increasing consumers in the electricity market. By growing smart technologies such as smart grid and smart energy management systems, customers were given a chance to actively participate in demand response programs (DRPs), and reduce their electricity bills as a result. This study overviews the DRPs and their practices, along with home energy management systems (HEMS) and load management techniques. The paper provides brief literature on HEMS technologies and challenges. The paper is organized in a way to provide some technical information about DRPs and HEMS to help the reader understand different concepts about the smart grid, and be able to compare the essential concerns about the smart grid. The article includes a brief discussion about DRPs and their importance for the future of energy management systems. It is followed by brief literature about smart grids and HEMS, and a home energy management system strategy is also discussed in detail. The literature shows that storage devices have a huge impact on the efficiency and performance of energy management system strategies.
Energies arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Chila Kaewpraek; Liaqat Ali; Md. Arefin Rahman; Mohammad Shakeri; M. S. Chowdhury; M. S. Jamal; Md. Shahin Mia; Jagadeesh Pasupuleti; Le Khac Dong; Kuaanan Techato;doi: 10.3390/su13084505
The rapid rise in the number of fossil fuel uses over the last few decades has increased carbon dioxide (CO2) emissions. The purpose of implementing renewable energy solutions, such as solar, hydro, wind, biomass, and other renewable energy sources, is to mitigate global climate change worldwide. Solar energy has received more attention over the last few decades as an alternative source of energy, and it can play an essential role in the future of the energy industry. This is especially true of energy solutions that reduce land use, such as off-grid and on-grid solar rooftop technologies. This study aims to evaluate the energy conversion efficiency of photovoltaic (PV) systems in tropical environments. It also explores the effect of growing plants beneath PV panels. Two identical grid-connected PV systems—each containing five solar panels—were installed. The overall power production of each PV system was about 1.4 kWp. All the collected data were processed and analysed in the same way and by the same method. The PV systems were installed in two different environments—one with the possibility of growing the plants beneath the PV panels (PViGR module) and one with no possibility of growing the plants beneath the PV panels (PViSR module). The experiments were conducted in the Bo Yang District of Songkhla, Thailand over a 12-month period. Our findings indicate that green roof photovoltaic (GRPV) systems can produce around 2100 kWh of electricity in comparison to the 2000 kWh produced by other solar energy systems. Thereby, growing plants beneath PV panels increases electricity production efficiency by around 2%. This difference comes from the growing of plants underneath GRPV systems. Plants do not only help to trap humidity underneath GRPV systems but also help to cool the PV panels by absorbing the temperature beneath GRPV systems. Thus, in the production of electrical energy; the system was clearly showing significant differences in the mentioned results of both PV solar systems, which are evident for great energy efficiency performances in the future.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4505/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4505/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Nowshad Amin; Badariah Bais; Mohsen Shayestegan; Md. Akhtaruzzaman; Kamaruzzaman Sopian; Hamza Abunima; Mohammad Shakeri; Selim Reza; Sohif Mat;Abstract Research interests on various scientific aspects of photovoltaic (PV) systems has increased over the past decade. However, these systems are still undergoing further developments, and new designs are being demonstrated every year. To minimize cost, reduce size, and increase the efficiency of PV systems, the use of transformerless PV grid-connected inverters has gained the interest of the residential market. This study describes the main challenges in transformerless topologies as well as provides a review on new single-phase grid-connected PV systems, which are categorized into six groups based on the number of switches required in the system. The basic operational principles of various schemes under the six categories of inverters are presented and compared in terms of leakage current, efficiency, strengths and weaknesses. Furthermore, the proposed inverter structure and a compensation strategy for eliminating leakage current have been discussed followed by a comparative study with the available ones. Consequently, our proposed system has found noteworthy results in PSIM environment with a reduction in leakage current as compared with those in three other different topologies.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.09.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.09.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Jane Rose Atwongyeire; Arkom Palamanit; Adul Bennui; Mohammad Shakeri; Kuaanan Techato; Shahid Ali;doi: 10.3390/en15041595
handle: 10072/419294
This study assessed suitable smart grid areas for power generation and distribution from solar and small hydro energy resources in Western Uganda by employing the fuzzy analytic hierarchy process (AHP) based on geographic information system (GIS) data. This was performed based on the selected economic, environmental, and technical criteria by the authors guided by the experts’ judgements in the weighing process. The main criteria also included various sub-criteria. The sub-criteria of the economic criterion included distance from transmission lines, topography, and distance to roads. The environmental sub-criteria covered land use, sensitive areas, and protected areas. The technical sub-criteria were on distance from demand centers, available potential energy resources (solar and hydro), and climate (rainfall and sunshine). The weights of the main criteria and the sub-criteria were calculated by using the fuzzy AHP. These weights were then used in the GIS environment to determine both the potential for power generation from the solar energy resource and the smart grid suitable areas. According to the weight results, the economic criteria has the highest weight, followed by environmental and technical criteria. The validation of the experts’ judgements for each criterion by comparing the results from fuzzy AHP with AHP confirmed insignificant differences in weights for all criteria. The obtained suitable smart grid areas in Western Uganda have been classified into three parts, that is, the South, North, and Central. Therefore, this is a one-of-a-kind study that, in the authors’ view, will provide the initial insights to the government, policymakers, renewable energy practitioners, and researchers to investigate, map, and embrace decarbonization strategies for the electricity sector of Uganda.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1595/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/419294Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1595/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/419294Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 MalaysiaPublisher:MDPI AG Mohammad Shakeri; Nowshad Amin; Jagadeesh Pasupuleti; Abolfazl Mehbodniya; Nilofar Asim; Sieh Kiong Tiong; Foo Wah Low; Chong Tak Yaw; Nurul Asma Samsudin; Md Rokonuzzaman; Chong Kok Hen; Chin Wei Lai;doi: 10.3390/en13133312
With the growth in smart technology, customers have a chance to contribute to demand response programs and reduce their bills of electricity actively. This paper presents an intelligent wireless smart plug demonstration, which is designed to control the electrical appliances in the home energy management system (HEMS) application with a response to the utility company’s signal. Besides, a linear model of an energy management system utilizing a dynamic priority for electrical appliances is used as an energy management strategy. This can be useful for decreasing energy consumption in peak hours. Proposed hardware is tested with two different price strategies such as real-time pricing and a combination of this and incremental block rate (IBR) pricing. A small one-story house with ordinary electrical appliances is used as a test-bed for the proposed hardware and strategy. Initial results show that intelligent plugs can decrease the energy cost by 9% per day with an effective peak-to-average ratio deduction compared to the domicile without deploying intelligent plugs and controllers.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Md. Rokonuzzaman; Mohammad Shakeri; Fazrena Azlee Hamid; Mahmuda Khatun Mishu; Jagadeesh Pasupuleti; Kazi Sajedur Rahman; Sieh Kiong Tiong; Nowshad Amin;Amid growing demand for solar photovoltaic (PV) energy, the output from PV panels/cells fails to deliver maximum power to the load, due to the intermittency of ambient conditions. Therefore, utilizing maximum power point tracking (MPPT) becomes essential for PV systems. In this paper, a novel internet of things (IoT)-equipped MPPT solar charge controller (SCC) is designed and implemented. The proposed circuit system utilizes IoT-based sensors to send vital data to the cloud for remote monitoring and controlling purposes. The IoT platform helps the system to be monitored remotely. The PIC16F877A is used as a main controller of the proposed MPPT-SCC besides implementing the perturb and observe (P&O) technique and a customized buck–boost converter. To validate the proposed system, both simulation and hardware implementation are carried out by the MATLAB/SIMULINK environment and laboratory set up, respectively. The proposed MPPT-SCC can handle the maximum current of 10 A at 12 V voltage. Results show that the efficiency of the proposed system reaches up to 99.74% during a month of performance testing duration.
Electronics arrow_drop_down ElectronicsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2079-9292/9/8/1267/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics9081267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Electronics arrow_drop_down ElectronicsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2079-9292/9/8/1267/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics9081267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Rajib Baran Roy; Md. Rokonuzzaman; Nowshad Amin; Mahmuda Khatun Mishu; Sanath Alahakoon; Saifur Rahman; Nadarajah Mithulananthan; Kazi Sajedur Rahman; Mohammad Taghi Shakeri; Jagadeesh Pasupuleti;handle: 10919/118473
Dans cet article, des algorithmes de réseau neuronal artificiel (RNA) basés sur Levenberg-Marquardt (LM), la régularisation bayésienne (BR) et le gradient conjugué échelonné (SCG) sont déployés dans la récupération d'énergie du point de puissance maximale (MPPT) dans le système solaire photovoltaïque (PV) pour forger une analyse de performance comparative des trois algorithmes différents. Une analyse comparative entre les algorithmes en termes de performance de traitement de l'ensemble de données formé est présentée. L'environnement Matlab/Simulink est utilisé pour concevoir le système de collecte d'énergie de suivi de point de puissance maximale et la boîte à outils de réseau neuronal artificiel est utilisée pour analyser le modèle développé. Le modèle proposé est formé avec 1000 ensembles de données d'irradiance solaire, de température et de tensions. Soixante-dix pour cent des données sont utilisées pour la formation, tandis que 15% des données sont utilisées pour la validation et 15% des données sont utilisées pour les tests. L'histogramme d'erreur des ensembles de données formés représente zéro erreur dans la phase de formation, de validation et de test de la correspondance des données. La meilleure performance de validation est atteinte à 1000 époques avec une erreur quadratique moyenne presque nulle où l'ensemble de données formé est convergé vers les meilleurs résultats d'entraînement. Selon les résultats, la régression et le gradient sont de 1, 1, 0,99 et 0,000078, 0,0000015739 et 0,26139 pour les algorithmes de Levenberg-Marquardt, de régularisation bayésienne et de gradient conjugué échelonné, respectivement. Les paramètres de quantité de mouvement sont 0,0000001 et 50000 pour les algorithmes de régularisation de Levenberg-Marquardt et Bayesian, respectivement, tandis que l'algorithme Scaled Conjugate Gradient n'a aucun paramètre de quantité de mouvement. L'algorithme Scaled Conjugate Gradient présente de meilleures performances par rapport aux algorithmes de Levenberg-Marquardt et de régularisation bayésienne. Cependant, compte tenu de la formation de l'ensemble de données, de la corrélation entre l'entrée-sortie et l'erreur, l'algorithme de Levenberg-Marquardt est plus performant. En este documento, los algoritmos basados en redes neuronales artificiales (ANN) Levenberg-Marquardt (LM), Regularización Bayesiana (BR) y Gradiente Conjugado Escalado (SCG) se implementan en la recolección de energía de seguimiento de punto de máxima potencia (MPPT) en un sistema solar fotovoltaico (PV) para forjar un análisis de rendimiento comparativo de los tres algoritmos diferentes. Se presenta un análisis comparativo entre los algoritmos en términos del rendimiento del manejo del conjunto de datos entrenado. El entorno MATLAB/Simulink se utiliza para diseñar el sistema de recolección de energía de seguimiento de punto de máxima potencia y la caja de herramientas de red neuronal artificial se utiliza para analizar el modelo desarrollado. El modelo propuesto está entrenado con 1000 conjuntos de datos de irradiancia solar, temperatura y voltajes. Los datos del setenta por ciento se utilizan para la capacitación, mientras que los datos del 15% se emplean para la validación y los datos del 15% se utilizan para las pruebas. El histograma de error de conjuntos de datos entrenados representa un error cero en la fase de entrenamiento, validación y prueba de la coincidencia de datos. El mejor rendimiento de validación se logra en 1000 épocas con un error cuadrático medio casi nulo donde el conjunto de datos entrenados converge a los mejores resultados de entrenamiento. Según los resultados, la regresión y el gradiente son 1, 1, 0.99 y 0.000078, 0.0000015739 y 0.26139 para los algoritmos Levenberg-Marquardt, Bayesian Regularization y Scaled Conjugate Gradient, respectivamente. Los parámetros de momento son 0.0000001 y 50000 para los algoritmos Levenberg-Marquardt y Bayesian Regularization, respectivamente, mientras que el algoritmo Scaled Conjugate Gradient no tiene ningún parámetro de momento. El algoritmo Scaled Conjugate Gradient exhibe un mejor rendimiento en comparación con los algoritmos Levenberg-Marquardt y Bayesian Regularization. Sin embargo, teniendo en cuenta el entrenamiento del conjunto de datos, la correlación entre la entrada-salida y el error, el algoritmo de Levenberg-Marquardt funciona mejor. In this paper, artificial neural network (ANN) based Levenberg-Marquardt (LM), Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) algorithms are deployed in maximum power point tracking (MPPT) energy harvesting in solar photovoltaic (PV) system to forge a comparative performance analysis of the three different algorithms. A comparative analysis among the algorithms in terms of the performance of handling the trained dataset is presented. The MATLAB/Simulink environment is used to design the maximum power point tracking energy harvesting system and the artificial neural network toolbox is utilized to analyze the developed model. The proposed model is trained with 1000 dataset of solar irradiance, temperature, and voltages. Seventy percent data is used for training, while 15% data is employed for validation, and 15% data is utilized for testing. The trained datasets error histogram represents zero error in the training, validation, and test phase of data matching. The best validation performance is attained at 1000 epochs with nearly zero mean squared error where the trained data set is converged to the best training results. According to the results, the regression and gradient are 1, 1, 0.99 and 0.000078, 0.0000015739 and 0.26139 for Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient algorithms, respectively. The momentum parameters are 0.0000001 and 50000 for Levenberg-Marquardt and Bayesian Regularization algorithms, respectively, while the Scaled Conjugate Gradient algorithm does not have any momentum parameter. The Scaled Conjugate Gradient algorithm exhibit better performance compared to Levenberg-Marquardt and Bayesian Regularization algorithms. However, considering the dataset training, the correlation between input-output and error, the Levenberg-Marquardt algorithm performs better. في هذه الورقة، يتم نشر خوارزميات Levenberg - Marquardt (LM) و Bayesian Regularization (BR) و Scaled Conjugate Gradient (SCG) المستندة إلى الشبكة العصبية الاصطناعية (ANN) في حصاد الطاقة الأقصى لتتبع نقاط القدرة (MPPT) في نظام الخلايا الكهروضوئية الشمسية (PV) لصياغة تحليل أداء مقارن للخوارزميات الثلاث المختلفة. يتم تقديم تحليل مقارن بين الخوارزميات من حيث أداء التعامل مع مجموعة البيانات المدربة. يتم استخدام بيئة MATLAB/Simulink لتصميم نظام حصاد الطاقة الأقصى لتتبع نقطة الطاقة ويتم استخدام مجموعة أدوات الشبكة العصبية الاصطناعية لتحليل النموذج المطور. تم تدريب النموذج المقترح على 1000 مجموعة بيانات من الإشعاع الشمسي ودرجة الحرارة والفولتية. يتم استخدام سبعين في المائة من البيانات للتدريب، بينما يتم استخدام 15 ٪ من البيانات للتحقق من صحتها، ويتم استخدام 15 ٪ من البيانات للاختبار. يمثل الرسم البياني لأخطاء مجموعات البيانات المدربة خطأً صفريًا في مرحلة التدريب والتحقق من الصحة والاختبار لمطابقة البيانات. يتم تحقيق أفضل أداء للتحقق في 1000 حقبة مع ما يقرب من الصفر متوسط الخطأ التربيعي حيث يتم تقريب مجموعة البيانات المدربة إلى أفضل نتائج التدريب. وفقًا للنتائج، فإن الانحدار والتدرج هما 1 و 1 و 0.99 و 0.000078 و 0.0000015739 و 0.26139 لخوارزميات Levenberg - Marquardt و Bayesian Regularization و Scaled Conjugate Gradient، على التوالي. معلمات الزخم هي 0.0000001 و 50000 لخوارزميات Levenberg - Marquardt و Bayesian Regularization، على التوالي، في حين أن خوارزمية التدرج المتقارن المقياس لا تحتوي على أي معلمة زخم. تُظهر خوارزمية التدرج المتقارن المقياس أداءً أفضل مقارنة بخوارزميات تنظيم ليفنبرغ- ماركاردت وبايزيان. ومع ذلك، بالنظر إلى تدريب مجموعة البيانات، والارتباط بين المدخلات والمخرجات والخطأ، فإن خوارزمية ليفنبرغ- ماركوارت تؤدي بشكل أفضل.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3096864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3096864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Md. Akhtaruzzaman; Nowshad Amin; Nowshad Amin; Mohsen Shayestegan; Hamza Abunima; Abdulrahman M. Alamoud; Mohammad Shakeri; Kamaruzzaman Sopian; Selim Reza;Abstract The Home Energy Management System (HEMS) is an important part of the smart grid that enables the residential customers to execute demand response programs autonomously. This study presents the outcome of a new system architecture and control algorithm that can use both battery storage and manage the temperature of thermal appliances. The proposed algorithm receives the price information from the utility company in advance and purchases the electricity at off-peak hours and utilizes the battery as well as manages the temperature of the thermal appliances during peak hours. The proposed algorithm assures that the power consumption of the electrical appliances is always less than certain level. The proposed house is supported by the battery system and Photovoltaic system as to increase the green index by utilizing alternative energy resource. The amount of the power that can be drained from the battery is limited by the algorithm to remain more during a day. The simulation results indicate that the proposed system is able to reduce the electricity price up to 20% a day without sacrificing the user’s comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu