- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Hong-Seok Mun; Muhammad Ammar Dilawar; Shad Mahfuz; Keiven Mark B. Ampode; Veasna Chem; Young-Hwa Kim; Jong-Pil Moon; Chul-Ju Yang;This experiment evaluated the performance of a combined geothermal heat pump and solar system (GHPS). A GHPS heating system was installed at a pig house and a comparative study was carried out between the environmentally friendly renewable energy source (GHPS) and the traditional heating method using fossil fuels. The impact of both heating systems on production performance, housing environment, noxious gas emission, and energy efficiency were evaluated along with the GHPS system performance parameters such as the coefficient of performance (COP), inlet and outlet water temperature and efficiency of solar collector. The average temperature inside the pig house was significantly higher (p < 0.05) in the GHPS heating system. Similarly, the outflow temperature was increased significantly (p < 0.05) than the inflow temperature. The results of COP and efficiency of the solar system also indicated that the GHPS is an efficient heating system. The electricity consumption and carbon dioxide gas concentration were also reduced (p < 0.05) in the GHPS system. This study also predicts electricity consumption using an artificial intelligence (AI)-based model. The results showed that the proposed model justifies all the acceptance criteria in terms of the correlation coefficient, root mean square value and mean absolute error. The results of our experiment show that the GHPS system can be installed at a pig house for sustainable swine production as a renewable energy source.
Animals arrow_drop_down AnimalsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-2615/12/20/2860/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Animals arrow_drop_down AnimalsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-2615/12/20/2860/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Md Sharifuzzaman; Hong-Seok Mun; Keiven Mark B. Ampode; Eddiemar B. Lagua; Hae-Rang Park; Young-Hwa Kim; Md Kamrul Hasan; Chul-Ju Yang;Vietnam heavily relies on pork as its primary source of animal protein. Traditional farming methods, characterized by small-scale operations, dominate the industry. However, challenges such as rising feed costs, disease outbreaks, and market volatility are prompting many farmers to abandon their businesses. Recognizing the pivotal role of the swine sector in both economic development and nutrition, authorities must intervene to prevent its collapse. In developed nations, smart pig farming, utilizing technologies like sensors and cameras for data collection and real-time decision-making, has significantly improved health and productivity. These technologies can detect subtle indicators of animal well-being, enabling prompt intervention. This review aims to analyze the drivers of Vietnam’s swine farming, identify existing production system flaws, and explore innovative precision farming methods worldwide. Embracing precision farming promises to enhance Vietnam’s competitiveness in export markets and bolster consumer confidence. However, reliance solely on expensive foreign technologies may benefit large-scale farms, leaving smaller ones behind. Therefore, fostering local innovation and validating cost-effective solutions will be crucial for the sustainable growth of small- and medium-scale pig farming in Vietnam.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Shad Mahfuz; Hong-Seok Mun; Muhammad Ammar Dilawar; Keiven Mark B. Ampode; Veasna Chem; Young-Hwa Kim; Jong-Pil Moon; Chul-Ju Yang;doi: 10.3390/su142215243
This experiment was conducted to assess the effects of a geothermal plus sunlight-based incubator on the growth performance, electricity uses and housing environment of piglets. A total of 20 piglets, average 7.7 ± 0.015 kg (mean ± std.) initial body weight, were randomly divided into two separated incubators: control (conventional incubator) and the geothermal plus sunlight-based heat pump (GS) incubator with 10 replicated piglets. The experimental duration was 8 weeks. Average daily weight gain, feed intake, electricity consumption, and house temperature, humidity, ammonia, and carbon dioxide concentration were measured on a weekly basis. There were no significant differences in the final body weight, average daily body weight gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) between the incubators. The electricity consumption of the GS incubator was reduced by 120.95 kWh/head and the saving efficacy was about 64.76% that of the conventional incubator. The electricity cost was reduced by 3.26 USD and the ratio of feed cost to weigh gain was lower in the GS-based incubator. No significant differences were noted for the internal temperature and humidity between the incubators. The ammonia concentration and carbon dioxide concentration were significantly lower (p < 0.05) in the GS-based incubator than the control incubator. The geothermal plus sunlight-based incubator might be healthy and economic for the sustainable pig production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Hong-Seok Mun; Muhammad Ammar Dilawar; Shad Mahfuz; Keiven Mark B. Ampode; Veasna Chem; Young-Hwa Kim; Jong-Pil Moon; Chul-Ju Yang;This experiment evaluated the performance of a combined geothermal heat pump and solar system (GHPS). A GHPS heating system was installed at a pig house and a comparative study was carried out between the environmentally friendly renewable energy source (GHPS) and the traditional heating method using fossil fuels. The impact of both heating systems on production performance, housing environment, noxious gas emission, and energy efficiency were evaluated along with the GHPS system performance parameters such as the coefficient of performance (COP), inlet and outlet water temperature and efficiency of solar collector. The average temperature inside the pig house was significantly higher (p < 0.05) in the GHPS heating system. Similarly, the outflow temperature was increased significantly (p < 0.05) than the inflow temperature. The results of COP and efficiency of the solar system also indicated that the GHPS is an efficient heating system. The electricity consumption and carbon dioxide gas concentration were also reduced (p < 0.05) in the GHPS system. This study also predicts electricity consumption using an artificial intelligence (AI)-based model. The results showed that the proposed model justifies all the acceptance criteria in terms of the correlation coefficient, root mean square value and mean absolute error. The results of our experiment show that the GHPS system can be installed at a pig house for sustainable swine production as a renewable energy source.
Animals arrow_drop_down AnimalsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-2615/12/20/2860/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Animals arrow_drop_down AnimalsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-2615/12/20/2860/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Md Sharifuzzaman; Hong-Seok Mun; Keiven Mark B. Ampode; Eddiemar B. Lagua; Hae-Rang Park; Young-Hwa Kim; Md Kamrul Hasan; Chul-Ju Yang;Vietnam heavily relies on pork as its primary source of animal protein. Traditional farming methods, characterized by small-scale operations, dominate the industry. However, challenges such as rising feed costs, disease outbreaks, and market volatility are prompting many farmers to abandon their businesses. Recognizing the pivotal role of the swine sector in both economic development and nutrition, authorities must intervene to prevent its collapse. In developed nations, smart pig farming, utilizing technologies like sensors and cameras for data collection and real-time decision-making, has significantly improved health and productivity. These technologies can detect subtle indicators of animal well-being, enabling prompt intervention. This review aims to analyze the drivers of Vietnam’s swine farming, identify existing production system flaws, and explore innovative precision farming methods worldwide. Embracing precision farming promises to enhance Vietnam’s competitiveness in export markets and bolster consumer confidence. However, reliance solely on expensive foreign technologies may benefit large-scale farms, leaving smaller ones behind. Therefore, fostering local innovation and validating cost-effective solutions will be crucial for the sustainable growth of small- and medium-scale pig farming in Vietnam.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Shad Mahfuz; Hong-Seok Mun; Muhammad Ammar Dilawar; Keiven Mark B. Ampode; Veasna Chem; Young-Hwa Kim; Jong-Pil Moon; Chul-Ju Yang;doi: 10.3390/su142215243
This experiment was conducted to assess the effects of a geothermal plus sunlight-based incubator on the growth performance, electricity uses and housing environment of piglets. A total of 20 piglets, average 7.7 ± 0.015 kg (mean ± std.) initial body weight, were randomly divided into two separated incubators: control (conventional incubator) and the geothermal plus sunlight-based heat pump (GS) incubator with 10 replicated piglets. The experimental duration was 8 weeks. Average daily weight gain, feed intake, electricity consumption, and house temperature, humidity, ammonia, and carbon dioxide concentration were measured on a weekly basis. There were no significant differences in the final body weight, average daily body weight gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) between the incubators. The electricity consumption of the GS incubator was reduced by 120.95 kWh/head and the saving efficacy was about 64.76% that of the conventional incubator. The electricity cost was reduced by 3.26 USD and the ratio of feed cost to weigh gain was lower in the GS-based incubator. No significant differences were noted for the internal temperature and humidity between the incubators. The ammonia concentration and carbon dioxide concentration were significantly lower (p < 0.05) in the GS-based incubator than the control incubator. The geothermal plus sunlight-based incubator might be healthy and economic for the sustainable pig production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
