- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United States, SingaporePublisher:Springer Science and Business Media LLC Fan, Z; Bosman, M; Huang, X; Huang, D; Yu, Y; Ong, K.P; Akimov, Y.A; Wu, L; Li, B; Wu, J; Huang, Y; Liu, Q; Eng Png, C; Lip Gan, C; Yang, P; Zhang, H;AbstractGold, silver, platinum and palladium typically crystallize with the face-centred cubic structure. Here we report the high-yield solution synthesis of gold nanoribbons in the 4H hexagonal polytype, a previously unreported metastable phase of gold. These gold nanoribbons undergo a phase transition from the original 4H hexagonal to face-centred cubic structure on ligand exchange under ambient conditions. Using monochromated electron energy-loss spectroscopy, the strong infrared plasmon absorption of single 4H gold nanoribbons is observed. Furthermore, the 4H hexagonal phases of silver, palladium and platinum can be readily stabilized through direct epitaxial growth of these metals on the 4H gold nanoribbon surface. Our findings may open up new strategies for the crystal phase-controlled synthesis of advanced noble metal nanomaterials.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0bd1r61nData sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10220/46206Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10356/89243Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2015License: © 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Data sources: Digital Repository of NTUeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms8684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0bd1r61nData sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10220/46206Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10356/89243Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2015License: © 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Data sources: Digital Repository of NTUeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms8684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Elsevier BV Jinli Yu; Mingzi Sun; Juan Wang; Yunhao Wang; Yang Li; Pengyi Lu; Yangbo Ma; Jingwen Zhou; Wenze Chen; Xichen Zhou; Chun-Sing Lee; Bolong Huang; Zhanxi Fan;handle: 10397/102352
202310 bcvc ; Version of Record ; RGC ; Others ; Shenzhen Science and Technology Program; National Natural Science Foundation of China; ITC via Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM); funding for the Projects of Strategic Importance of The Hong Kong Polytechnic University; City University of Hong Kong ; and by the Departmental General Research Fund (project code: ZVUL) from the Department of Applied Biology and Chemical Technology of the Hong Kong Polytechnic University ; Published ; CC
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102352Data sources: Bielefeld Academic Search Engine (BASE)Cell Reports Physical ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xcrp.2023.101366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102352Data sources: Bielefeld Academic Search Engine (BASE)Cell Reports Physical ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xcrp.2023.101366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Wenjing Tian; Ding Zhou; Haotong Wei; Junhu Zhang; Bin Xu; Hao Zhang; Weili Yu; Fenghong Li; Bai Yang; Zhanxi Fan;doi: 10.1039/c1ee01485d
Efficient, low-cost polymer/nanocrystal (NC) hybrid solar cells fabricated from aqueous materials, a PPV precursor and CdTe NCs, were demonstrated. The cells showed an efficiency of 2.14% under AM 1.5 (100 mW cm−2). This work provided a facile and feasible protocol to produce efficient solar cellsvia a cheaper and greener route.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01485d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01485d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Singapore, Australia, AustraliaPublisher:Royal Society of Chemistry (RSC) Hua Zhang; Zhanxi Fan; Hong Jin Fan; Xinhui Xia; Xinhui Xia; Qin-qin Xiong; Yongqi Zhang; Jiangping Tu; Dongliang Chao; Xili Tong;doi: 10.1039/c5ee00339c
handle: 2440/123361 , 10356/97767 , 10220/25650
Hierarchical TiC hollow branched fibres are synthesized and demonstrate high-rate supercapacitor energy storage with remarkable wide-temperature specific capacitance and excellent cycling stability.
Energy & Environment... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee00339c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy & Environment... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee00339c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SingaporePublisher:Elsevier BV Zhu, Changrong; Xia, Xinhui; Liu, Jilei; Fan, Zhanxi; Chao, Dongliang; Zhang, Hua; Fan, Hong Jin;handle: 10220/39659 , 10356/81740
While SnO2 is regarded as a good material for Li ion storage because of its high theoretical capacity, its microstructured powder form cannot be directly used as battery electrode because of a drastic pulverization problem and thus poor cyclic performance. Nanostructuring offers opportunities to circumvent this drawback. We report the construction of SnO2 nanoflake branches onto robust TiO2 nanotube stems. This core-branch nanostructured electrode demonstrate evidently improved Li ion storage properties compared to powders, with more stable cycling processes and higher rate capability. In this design, the TiO2 nanotube stems are realized by atomic layer deposition and offer a low-mass scaffold for the SnO2 nanoflakes and also a charge conductive path.
Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2013.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2013.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SingaporePublisher:Royal Society of Chemistry (RSC) Jianhui Zhu; Xiaonan Shen; Hua Zhang; Jinping Liu; Chenji Zou; Ting Yu; Ting Yu; Zhanxi Fan; Wei Ai; Jian Jiang;doi: 10.1039/c4ee00602j
handle: 10356/103540 , 10220/24528
Uniform carbon fibers evolved from bamboo chopsticks garbage are achieved by a facile hydrothermal method, exhibiting competitive electrochemical behavior with commercial graphite, or pretty high anodic performance after being optimized.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014License: CC BY NCFull-Text: https://hdl.handle.net/10356/103540Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014License: CC BY NCFull-Text: http://hdl.handle.net/10220/24528Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee00602j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014License: CC BY NCFull-Text: https://hdl.handle.net/10356/103540Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014License: CC BY NCFull-Text: http://hdl.handle.net/10220/24528Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee00602j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Bai Yang; Zhanxi Fan; Hao Zhang; Qingfeng Dong; Haotong Wei; Weili Yu; Zhenyu Xing; Wenjing Tian;doi: 10.1021/am200616j
pmid: 21728356
Poly(1,4-naphthalenevinylene), prepared from a water-soluble precursor, was used to fabricate hybrid solar cells by blending with water-soluble CdTe nanocrystals (NCs) to act as the photoactive layer. In composites with CdTe NCs as the electron acceptors in a bulk heterojunction configuration, the devices exhibited a short-circuit current density of -6.14 mA/cm(2), an open-circuit voltage of 0.44 V, a fill factor of 0.32, and a power conversion efficiency of 0.86% under AM1.5G conditions. Because the devices were fabricated from water-soluble materials, the procedure was generally simple and environmentally friendly in comparison to the conventional devices fabricated from oil-soluble materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/am200616j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/am200616j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Junjun Li; Yanan Chen; Zhanxi Fan; Zhanxi Fan; Zhicheng Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.676876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.676876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fu Liu; Jingwen Zhou; Yunhao Wang; Yuecheng Xiong; Fengkun Hao; Yangbo Ma; Pengyi Lu; Juan Wang; Jinwen Yin; Guozhi Wang; Jinli Yu; Yan Yan; Zonglong Zhu; Jie Zeng; Zhanxi Fan;Given the unique characteristic of integrating CO2 conversion and renewable energy storage, metal–CO2 batteries (MCBs) are expected to become the next‐generation technology to address both environmental and energy crises. As involving complex gas–liquid–solid three‐phase interfacial reactions, cathodes of MCBs can significantly affect the overall battery operation, thus attracting much research attention. Compared to conventional materials, 2D materials offer great opportunities for the design and preparation of high‐performance catalyst cathodes, especially showing superior bifunctional electrocatalytic capacity for rechargeable MCBs. The inherent high‐specific‐surface area and diverse structural architectures of 2D materials enable their flexible and rational engineering designs toward kinetically favorable metal–CO2 electrochemistry. Herein this review, the cutting‐edge progresses of 2D materials‐based catalyst cathodes are presented in MCBs. The reaction mechanisms of various MCBs, including both nonaqueous and aqueous systems, are systematically introduced. Then, the design criteria of catalyst cathodes, and the merits and demerits of 2D materials‐based catalyst cathodes are discussed. After that, three representative engineering strategies (i.e., defect control, phase engineering, and heterostructure design) of 2D materials for high‐performance MCBs are systematically described. Finally, the current research advances are briefly summarized and the confronting challenges and opportunities for future development of advanced MCB cathodes are proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sstr.202300025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sstr.202300025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United States, SingaporePublisher:Springer Science and Business Media LLC Fan, Z; Bosman, M; Huang, X; Huang, D; Yu, Y; Ong, K.P; Akimov, Y.A; Wu, L; Li, B; Wu, J; Huang, Y; Liu, Q; Eng Png, C; Lip Gan, C; Yang, P; Zhang, H;AbstractGold, silver, platinum and palladium typically crystallize with the face-centred cubic structure. Here we report the high-yield solution synthesis of gold nanoribbons in the 4H hexagonal polytype, a previously unreported metastable phase of gold. These gold nanoribbons undergo a phase transition from the original 4H hexagonal to face-centred cubic structure on ligand exchange under ambient conditions. Using monochromated electron energy-loss spectroscopy, the strong infrared plasmon absorption of single 4H gold nanoribbons is observed. Furthermore, the 4H hexagonal phases of silver, palladium and platinum can be readily stabilized through direct epitaxial growth of these metals on the 4H gold nanoribbon surface. Our findings may open up new strategies for the crystal phase-controlled synthesis of advanced noble metal nanomaterials.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0bd1r61nData sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10220/46206Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10356/89243Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2015License: © 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Data sources: Digital Repository of NTUeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms8684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0bd1r61nData sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10220/46206Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10356/89243Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2015License: © 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Data sources: Digital Repository of NTUeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms8684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Elsevier BV Jinli Yu; Mingzi Sun; Juan Wang; Yunhao Wang; Yang Li; Pengyi Lu; Yangbo Ma; Jingwen Zhou; Wenze Chen; Xichen Zhou; Chun-Sing Lee; Bolong Huang; Zhanxi Fan;handle: 10397/102352
202310 bcvc ; Version of Record ; RGC ; Others ; Shenzhen Science and Technology Program; National Natural Science Foundation of China; ITC via Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM); funding for the Projects of Strategic Importance of The Hong Kong Polytechnic University; City University of Hong Kong ; and by the Departmental General Research Fund (project code: ZVUL) from the Department of Applied Biology and Chemical Technology of the Hong Kong Polytechnic University ; Published ; CC
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102352Data sources: Bielefeld Academic Search Engine (BASE)Cell Reports Physical ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xcrp.2023.101366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102352Data sources: Bielefeld Academic Search Engine (BASE)Cell Reports Physical ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xcrp.2023.101366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Wenjing Tian; Ding Zhou; Haotong Wei; Junhu Zhang; Bin Xu; Hao Zhang; Weili Yu; Fenghong Li; Bai Yang; Zhanxi Fan;doi: 10.1039/c1ee01485d
Efficient, low-cost polymer/nanocrystal (NC) hybrid solar cells fabricated from aqueous materials, a PPV precursor and CdTe NCs, were demonstrated. The cells showed an efficiency of 2.14% under AM 1.5 (100 mW cm−2). This work provided a facile and feasible protocol to produce efficient solar cellsvia a cheaper and greener route.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01485d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01485d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Singapore, Australia, AustraliaPublisher:Royal Society of Chemistry (RSC) Hua Zhang; Zhanxi Fan; Hong Jin Fan; Xinhui Xia; Xinhui Xia; Qin-qin Xiong; Yongqi Zhang; Jiangping Tu; Dongliang Chao; Xili Tong;doi: 10.1039/c5ee00339c
handle: 2440/123361 , 10356/97767 , 10220/25650
Hierarchical TiC hollow branched fibres are synthesized and demonstrate high-rate supercapacitor energy storage with remarkable wide-temperature specific capacitance and excellent cycling stability.
Energy & Environment... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee00339c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy & Environment... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee00339c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SingaporePublisher:Elsevier BV Zhu, Changrong; Xia, Xinhui; Liu, Jilei; Fan, Zhanxi; Chao, Dongliang; Zhang, Hua; Fan, Hong Jin;handle: 10220/39659 , 10356/81740
While SnO2 is regarded as a good material for Li ion storage because of its high theoretical capacity, its microstructured powder form cannot be directly used as battery electrode because of a drastic pulverization problem and thus poor cyclic performance. Nanostructuring offers opportunities to circumvent this drawback. We report the construction of SnO2 nanoflake branches onto robust TiO2 nanotube stems. This core-branch nanostructured electrode demonstrate evidently improved Li ion storage properties compared to powders, with more stable cycling processes and higher rate capability. In this design, the TiO2 nanotube stems are realized by atomic layer deposition and offer a low-mass scaffold for the SnO2 nanoflakes and also a charge conductive path.
Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2013.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2013.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SingaporePublisher:Royal Society of Chemistry (RSC) Jianhui Zhu; Xiaonan Shen; Hua Zhang; Jinping Liu; Chenji Zou; Ting Yu; Ting Yu; Zhanxi Fan; Wei Ai; Jian Jiang;doi: 10.1039/c4ee00602j
handle: 10356/103540 , 10220/24528
Uniform carbon fibers evolved from bamboo chopsticks garbage are achieved by a facile hydrothermal method, exhibiting competitive electrochemical behavior with commercial graphite, or pretty high anodic performance after being optimized.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014License: CC BY NCFull-Text: https://hdl.handle.net/10356/103540Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014License: CC BY NCFull-Text: http://hdl.handle.net/10220/24528Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee00602j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014License: CC BY NCFull-Text: https://hdl.handle.net/10356/103540Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014License: CC BY NCFull-Text: http://hdl.handle.net/10220/24528Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee00602j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Bai Yang; Zhanxi Fan; Hao Zhang; Qingfeng Dong; Haotong Wei; Weili Yu; Zhenyu Xing; Wenjing Tian;doi: 10.1021/am200616j
pmid: 21728356
Poly(1,4-naphthalenevinylene), prepared from a water-soluble precursor, was used to fabricate hybrid solar cells by blending with water-soluble CdTe nanocrystals (NCs) to act as the photoactive layer. In composites with CdTe NCs as the electron acceptors in a bulk heterojunction configuration, the devices exhibited a short-circuit current density of -6.14 mA/cm(2), an open-circuit voltage of 0.44 V, a fill factor of 0.32, and a power conversion efficiency of 0.86% under AM1.5G conditions. Because the devices were fabricated from water-soluble materials, the procedure was generally simple and environmentally friendly in comparison to the conventional devices fabricated from oil-soluble materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/am200616j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/am200616j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Junjun Li; Yanan Chen; Zhanxi Fan; Zhanxi Fan; Zhicheng Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.676876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.676876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fu Liu; Jingwen Zhou; Yunhao Wang; Yuecheng Xiong; Fengkun Hao; Yangbo Ma; Pengyi Lu; Juan Wang; Jinwen Yin; Guozhi Wang; Jinli Yu; Yan Yan; Zonglong Zhu; Jie Zeng; Zhanxi Fan;Given the unique characteristic of integrating CO2 conversion and renewable energy storage, metal–CO2 batteries (MCBs) are expected to become the next‐generation technology to address both environmental and energy crises. As involving complex gas–liquid–solid three‐phase interfacial reactions, cathodes of MCBs can significantly affect the overall battery operation, thus attracting much research attention. Compared to conventional materials, 2D materials offer great opportunities for the design and preparation of high‐performance catalyst cathodes, especially showing superior bifunctional electrocatalytic capacity for rechargeable MCBs. The inherent high‐specific‐surface area and diverse structural architectures of 2D materials enable their flexible and rational engineering designs toward kinetically favorable metal–CO2 electrochemistry. Herein this review, the cutting‐edge progresses of 2D materials‐based catalyst cathodes are presented in MCBs. The reaction mechanisms of various MCBs, including both nonaqueous and aqueous systems, are systematically introduced. Then, the design criteria of catalyst cathodes, and the merits and demerits of 2D materials‐based catalyst cathodes are discussed. After that, three representative engineering strategies (i.e., defect control, phase engineering, and heterostructure design) of 2D materials for high‐performance MCBs are systematically described. Finally, the current research advances are briefly summarized and the confronting challenges and opportunities for future development of advanced MCB cathodes are proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sstr.202300025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sstr.202300025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu