- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Hegazy Rezk; Enas Taha Sayed; Mohammad Ali Abdelkareem; A. G. Olabi;doi: 10.1002/er.8152
SummaryMicrobial fuel cell (MFC) is a promising technology since two important processes: wastewater treatment and electrical energy, can be obtained simultaneously. The performance of the MFC (maximum power density (MPD) and COD removal) depends mainly on substrate concentration, pH time, and initial COD. Therefore, the main target of this work is to simultaneously increase the MPD and COD removal by determining the optimal controlling parameters. The proposed methodology integrates fuzzy modelling and Harris Hawks optimization (HHO). Firstly, based on the experimental data set, an accurate fuzzy model is created to simulate the performance of MFC in terms of four controlling parameters. To prove the superiority of fuzzy model, the results are compared with response surface methodology (RSM) in terms of RMSE and coefficient of determination (R2). Secondly, using HHO, the optimal values of substrate concentration, co‐culture composition, pH, and time are determined. These four controlling parameters are used as decision variables during the optimization process, whereas the objective function is the simultaneous maximization of the MPD and COD removal. The obtained results proved that the optimal substrate concentration, pH, time, and initial COD values are 58.2%, 7, 14.4 days, and 32 × 10−3 (mg/L) respectively. Under this condition, the integration between fuzzy and HHO, the overall performance of MFC has been improved by 10.37% and 19.13%, respectively, compared with the experimental and RSM.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hegazy Rezk; Irik Z. Mukhametzyanov; Mohammad Ali Abdelkareem; Tareq Salameh; Enas Taha Sayed; Hussein M. Maghrabie; Ali Radwan; Tabbi Wilberforce; Khaled Elsaid; A.G. Olabi;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Authors: Abdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; +5 AuthorsAbdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; Mohamad Ramadan; Mohamad Ramadan; Abdul Hai Alami; Abdul Hai Alami; Nabila Shehata;With the fast growth of the global economy, energy supply and demand have a strong impact on social, economic, and environmental aspects. As a consequence, this has pushed the decision-makers to formulate objectives, guiding economic policies toward sustainable goals. The process is known as Sustainable Development Goals (SDGs) that have been proposed by the United Nations. This being said, the energy sector is a vital domain with a vast potential for improvments in terms of technologies and ligistalations. Solar energy is among the most efficient solutions proposed to reduce the economic and environmental footprints of energy. In this frame, the current paper aims to localize solar energy within SDGs and analyze the contribution of the solar energy towards the achievement of the SDGs. Moreover, the current work highlights the contributions of Mohammed bin Rashid Al Maktoum (MBR) Solar Park in the United Arab Emirates to achieving the SDGs. Indeed, the MBR Solar Park concept offers valuable insights of environmental impacts by deploying clean and affordable energy sources in place of conventional fossil fuel power plants that are still heavily used in the region. The MBR Solar Park operation has already mitigated 6.5 million tonnes of carbon dioxide equivalent and this number will likely rise when all phases are installed and operational. Moreover, it has been shown that MBR Solar Park achieve several SDGs such SDG 8: decent work and economic growth, SDG 9: industry, innovation and infrastructure, SDG 11: sustainable cities and communities, and SDG 15: life on land.
International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV A.G. Olabi; Hussein M. Maghrabie; Ohood Hameed Kadhim Adhari; Enas Taha Sayed; Bashria A.A. Yousef; Tareq Salameh; Mohammed Kamil; Mohammad Ali Abdelkareem;In recent years, attention has been drawn to battery thermal safety issues due to the importance of personal safety and vehicle service security. The latest advancements in battery thermal management (BTM) are conducted to face the expected challenges to ensure battery safety. The BTM technology enhances battery safety with a heat transfer intensifying method, which guarantees the battery operation performance based on the battery's thermokinetic, electrochemical, and mechanical characteristics at normal and abnormal operating conditions. Preventing overheating and providing an ideal working temperature for safe operation are also important. Therefore, developing a BTM system that is both safe and reliable has a vital research goal. A comprehensive review of BTM with enhanced safety is presented in this article. The present study introduces the advances in the applications of BTM with cyclic stability served, high energy density, and electrification of automobiles. A summary of relevant research is also provided to improve thermo-safe design innovation and cooperative optimization to meet the needs of green-energy vehicle commercialization. The current work discusses the applications of air, liquid, nanofluids, phase change material, heat pipe, and combinations of these technics for BTM. Finally, the current study describes the challenges and prospects for utilizing different types of BTM to distribute its technology for diverse applications. The present study shows that proper thermal management system (TMS) is required to increase the batteries' efficiency and lifetime. However, each TMS has its characteristics that differ from one to one. Therefore, the proposed TMS's configuration and optimum performance must be examined before real application.
International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Tasnim Eisa; Enas Taha Sayed; Enas Taha Sayed; Ahmed Bahaa; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Abdul Ghani Olabi; Abdul Ghani Olabi; Sameer Al-Asheh; Hussain Alawadhi; Hussain Alawadhi; Kyu-Jung Chae;Abstract Metal chalcogenides have received significant attention as electro-catalysts in different applications, due to their superior electrical conductivity and good thermal and mechanical stabilities. In this work, the optimum monocrystalline Ni-P and Ni-C, C (Se, S, O) nanosheet (NS), prepared on nickel foam as standalone anodes for urea fuel cells was introduced. The activity was investigated ex-situ and in-situ the cell. The results demonstrated that the non-oxide metal forms, i.e., Ni–P, Ni–S, and Ni–Se, have superior oxidation activity than the Ni layered double hydroxide (Ni-LDH) and Ni–O. In addition, Ni–Se showed the most superior urea oxidation activity among all prepared catalysts. Although the onset potential of all the samples was around 0.35 V vs Ag/AgCl, a steady current of 195 mAcm−2 was recorded after 120 min using Ni–Se, which is two times higher than that of Ni–S, five times higher than Ni–O, and ten times higher than Ni-LDH. The superior activity of the Ni–Se was related to its unique crystalline structure and the high porous morphology. The performance of Ni–Se electrode under actual direct urea fuel cell (DUFC) operation using a nonprecious a Prussian blue cathode revealed 33 mWcm−2 power, which is, one of the highest power outputs in DUFCs equipped with Ni-based anodes at room temperature, as far as the authors know.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Vsevolod D, Savelenko; Mikhail A, Ershov; Vladimir M, Kapustin; Elena A, Chernysheva; +5 AuthorsVsevolod D, Savelenko; Mikhail A, Ershov; Vladimir M, Kapustin; Elena A, Chernysheva; Tamer M M, Abdellatief; Ulyana A, Makhova; Alisa E, Makhmudova; Mohammad Ali, Abdelkareem; A G, Olabi;pmid: 35780873
The utilization of ethanol as a component of motor gasolines is an extremely effective way to increase the detonation resistance and environmental properties. In Russia, despite the existing prerequisites for the development of bioethanol industry, the real production of bioethanol is not executed, which is associated with its high price. One of the promising ways of leveling this drawback is the utilization of water-cut waste from its production, involving ethyl alcohol impurity concentrate (EAIC) instead of pure ethanol. This is a mixture of head and bottoms fractions obtained in the process of ethyl alcohol purification by distillation. This research paper investigates the impact of the nature of hydrocarbon fraction blended with ethyl alcohol impurity concentrate on the final characterization of E85 fuel and, in particular, on its phase stability and Reid vapor pressure. Physicochemical characteristics of the developed fuel composition were studied. The results indicated that none of the possible classes of hydrocarbons could effectively solve the problems of phase stability and volatility of E85 fuel. Additionally, methyl tert-butyl ether (MTBE) was the only promising component. The composition, consisting of 70 % ethyl alcohol impurity concentrate and 30 % methyl tertiary butyl ether, met the requirements of American society for testing and materials (ASTM 5798) in almost all respects. A significant discrepancy is observed only in the water content, which is compensated by the great phase stability of the composition at low temperatures. In addition, this fuel composition is characterized by great potential competitiveness in Russian conditions and without fiscal support, which was proved by preliminary calculations of the cost of E85 fuel.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hegazy Rezk; Hegazy Rezk; Tareq Salameh; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Enas Taha Sayed; Enas Taha Sayed; Abdul Ghani Olabi; Abdul Ghani Olabi;Abstract In this work, nine case studies for hybrid energy systems (HESs) were considered and analyzed to supply a certain load. The load demand contains an electrical load and hydrogen production for industrial applications in Neom city. The simulation and optimization of the considered HESs are performed using HOMER Pro software. The obtained optimized results were very close for some cases based on the economic, environmental, and social assessment. Multicriteria decision-making based on a different approach of weight such as no priority, CRITIC, Entropy, and TOPSIS techniques were used to decide the best-case study among the different nine cases. Moreover, extra techniques such as Weighted Aggregated Sum Product WASPA, MOORA, and EDAS were used to confirm the TOPSIS technique's results. The results show that the case study contains solar PV, DG, and battery energy storage (BES) was the best case in terms of economic, environmental, and social assessment. The levelized costs of energy and hydrogen for the best HES were 0.4 $/kWh and 21 $, respectively. The CO2 emission was 45912 kg/year which equivalent to saving 118,074 gallons of diesel.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Tareq Salameh; Enas Taha Sayed; A. G. Olabi; Ismail I. Hdaib; Yazeed Allan; Malek Alkasrawi; Mohammad Ali Abdelkareem;Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials, including organic wastes, is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore, optimizing the operating parameters, such as the initial pH value, operating temperature, N/C ratio, and organic concentration (xylose), plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex, expensive, and lengthy. The present research used an experimental data asset, adaptive network fuzzy inference system (ANFIS) modeling, and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect, which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Fermentation arrow_drop_down FermentationOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2311-5637/8/10/483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Fermentation arrow_drop_down FermentationOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2311-5637/8/10/483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Saudi Arabia, Saudi ArabiaPublisher:Informa UK Limited Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Nidal Hilal; Seungho Kook; Noreddine Ghaffour; In S. Kim; Hak Yong Kim; M. Obaid; M. Obaid; M. Obaid;handle: 10754/659227
AbstractResearch on membrane technology to provide fresh water while considering inextricably linked energy issues has resulted in remarkable accomplishments in the production of membranes, such as...
Critical Reviews in ... arrow_drop_down Critical Reviews in Environmental Science and TechnologyArticle . 2019 . Peer-reviewedData sources: CrossrefCritical Reviews in Environmental Science and TechnologyJournalData sources: Microsoft Academic GraphKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Critical Reviews in ... arrow_drop_down Critical Reviews in Environmental Science and TechnologyArticle . 2019 . Peer-reviewedData sources: CrossrefCritical Reviews in Environmental Science and TechnologyJournalData sources: Microsoft Academic GraphKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Hussein M. Maghrabie; Mohammad Ali Abdelkareem; Abdul Hai Al-Alami; Mohamad Ramadan; +3 AuthorsHussein M. Maghrabie; Mohammad Ali Abdelkareem; Abdul Hai Al-Alami; Mohamad Ramadan; Emad Mushtaha; Tabbi Wilberforce; Abdul Ghani Olabi;Advances in building-integrated photovoltaic (BIPV) systems for residential and commercial purposes are set to minimize overall energy requirements and associated greenhouse gas emissions. The BIPV design considerations entail energy infrastructure, pertinent renewable energy sources, and energy efficiency provisions. In this work, the performance of roof/façade-based BIPV systems and the affecting parameters on cooling/heating loads of buildings are reviewed. Moreover, this work provides an overview of different categories of BIPV, presenting the recent developments and sufficient references, and supporting more successful implementations of BIPV for various globe zones. A number of available technologies decide the best selections, and make easy configuration of the BIPV, avoiding any difficulties, and allowing flexibility of design in order to adapt to local environmental conditions, and are adequate to important considerations, such as building codes, building structures and loads, architectural components, replacement and maintenance, energy resources, and all associated expenditure. The passive and active effects of both air-based and water-based BIPV systems have great effects on the cooling and heating loads and thermal comfort and, hence, on the electricity consumption.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Hegazy Rezk; Enas Taha Sayed; Mohammad Ali Abdelkareem; A. G. Olabi;doi: 10.1002/er.8152
SummaryMicrobial fuel cell (MFC) is a promising technology since two important processes: wastewater treatment and electrical energy, can be obtained simultaneously. The performance of the MFC (maximum power density (MPD) and COD removal) depends mainly on substrate concentration, pH time, and initial COD. Therefore, the main target of this work is to simultaneously increase the MPD and COD removal by determining the optimal controlling parameters. The proposed methodology integrates fuzzy modelling and Harris Hawks optimization (HHO). Firstly, based on the experimental data set, an accurate fuzzy model is created to simulate the performance of MFC in terms of four controlling parameters. To prove the superiority of fuzzy model, the results are compared with response surface methodology (RSM) in terms of RMSE and coefficient of determination (R2). Secondly, using HHO, the optimal values of substrate concentration, co‐culture composition, pH, and time are determined. These four controlling parameters are used as decision variables during the optimization process, whereas the objective function is the simultaneous maximization of the MPD and COD removal. The obtained results proved that the optimal substrate concentration, pH, time, and initial COD values are 58.2%, 7, 14.4 days, and 32 × 10−3 (mg/L) respectively. Under this condition, the integration between fuzzy and HHO, the overall performance of MFC has been improved by 10.37% and 19.13%, respectively, compared with the experimental and RSM.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hegazy Rezk; Irik Z. Mukhametzyanov; Mohammad Ali Abdelkareem; Tareq Salameh; Enas Taha Sayed; Hussein M. Maghrabie; Ali Radwan; Tabbi Wilberforce; Khaled Elsaid; A.G. Olabi;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Authors: Abdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; +5 AuthorsAbdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; Mohamad Ramadan; Mohamad Ramadan; Abdul Hai Alami; Abdul Hai Alami; Nabila Shehata;With the fast growth of the global economy, energy supply and demand have a strong impact on social, economic, and environmental aspects. As a consequence, this has pushed the decision-makers to formulate objectives, guiding economic policies toward sustainable goals. The process is known as Sustainable Development Goals (SDGs) that have been proposed by the United Nations. This being said, the energy sector is a vital domain with a vast potential for improvments in terms of technologies and ligistalations. Solar energy is among the most efficient solutions proposed to reduce the economic and environmental footprints of energy. In this frame, the current paper aims to localize solar energy within SDGs and analyze the contribution of the solar energy towards the achievement of the SDGs. Moreover, the current work highlights the contributions of Mohammed bin Rashid Al Maktoum (MBR) Solar Park in the United Arab Emirates to achieving the SDGs. Indeed, the MBR Solar Park concept offers valuable insights of environmental impacts by deploying clean and affordable energy sources in place of conventional fossil fuel power plants that are still heavily used in the region. The MBR Solar Park operation has already mitigated 6.5 million tonnes of carbon dioxide equivalent and this number will likely rise when all phases are installed and operational. Moreover, it has been shown that MBR Solar Park achieve several SDGs such SDG 8: decent work and economic growth, SDG 9: industry, innovation and infrastructure, SDG 11: sustainable cities and communities, and SDG 15: life on land.
International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV A.G. Olabi; Hussein M. Maghrabie; Ohood Hameed Kadhim Adhari; Enas Taha Sayed; Bashria A.A. Yousef; Tareq Salameh; Mohammed Kamil; Mohammad Ali Abdelkareem;In recent years, attention has been drawn to battery thermal safety issues due to the importance of personal safety and vehicle service security. The latest advancements in battery thermal management (BTM) are conducted to face the expected challenges to ensure battery safety. The BTM technology enhances battery safety with a heat transfer intensifying method, which guarantees the battery operation performance based on the battery's thermokinetic, electrochemical, and mechanical characteristics at normal and abnormal operating conditions. Preventing overheating and providing an ideal working temperature for safe operation are also important. Therefore, developing a BTM system that is both safe and reliable has a vital research goal. A comprehensive review of BTM with enhanced safety is presented in this article. The present study introduces the advances in the applications of BTM with cyclic stability served, high energy density, and electrification of automobiles. A summary of relevant research is also provided to improve thermo-safe design innovation and cooperative optimization to meet the needs of green-energy vehicle commercialization. The current work discusses the applications of air, liquid, nanofluids, phase change material, heat pipe, and combinations of these technics for BTM. Finally, the current study describes the challenges and prospects for utilizing different types of BTM to distribute its technology for diverse applications. The present study shows that proper thermal management system (TMS) is required to increase the batteries' efficiency and lifetime. However, each TMS has its characteristics that differ from one to one. Therefore, the proposed TMS's configuration and optimum performance must be examined before real application.
International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Tasnim Eisa; Enas Taha Sayed; Enas Taha Sayed; Ahmed Bahaa; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Abdul Ghani Olabi; Abdul Ghani Olabi; Sameer Al-Asheh; Hussain Alawadhi; Hussain Alawadhi; Kyu-Jung Chae;Abstract Metal chalcogenides have received significant attention as electro-catalysts in different applications, due to their superior electrical conductivity and good thermal and mechanical stabilities. In this work, the optimum monocrystalline Ni-P and Ni-C, C (Se, S, O) nanosheet (NS), prepared on nickel foam as standalone anodes for urea fuel cells was introduced. The activity was investigated ex-situ and in-situ the cell. The results demonstrated that the non-oxide metal forms, i.e., Ni–P, Ni–S, and Ni–Se, have superior oxidation activity than the Ni layered double hydroxide (Ni-LDH) and Ni–O. In addition, Ni–Se showed the most superior urea oxidation activity among all prepared catalysts. Although the onset potential of all the samples was around 0.35 V vs Ag/AgCl, a steady current of 195 mAcm−2 was recorded after 120 min using Ni–Se, which is two times higher than that of Ni–S, five times higher than Ni–O, and ten times higher than Ni-LDH. The superior activity of the Ni–Se was related to its unique crystalline structure and the high porous morphology. The performance of Ni–Se electrode under actual direct urea fuel cell (DUFC) operation using a nonprecious a Prussian blue cathode revealed 33 mWcm−2 power, which is, one of the highest power outputs in DUFCs equipped with Ni-based anodes at room temperature, as far as the authors know.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Vsevolod D, Savelenko; Mikhail A, Ershov; Vladimir M, Kapustin; Elena A, Chernysheva; +5 AuthorsVsevolod D, Savelenko; Mikhail A, Ershov; Vladimir M, Kapustin; Elena A, Chernysheva; Tamer M M, Abdellatief; Ulyana A, Makhova; Alisa E, Makhmudova; Mohammad Ali, Abdelkareem; A G, Olabi;pmid: 35780873
The utilization of ethanol as a component of motor gasolines is an extremely effective way to increase the detonation resistance and environmental properties. In Russia, despite the existing prerequisites for the development of bioethanol industry, the real production of bioethanol is not executed, which is associated with its high price. One of the promising ways of leveling this drawback is the utilization of water-cut waste from its production, involving ethyl alcohol impurity concentrate (EAIC) instead of pure ethanol. This is a mixture of head and bottoms fractions obtained in the process of ethyl alcohol purification by distillation. This research paper investigates the impact of the nature of hydrocarbon fraction blended with ethyl alcohol impurity concentrate on the final characterization of E85 fuel and, in particular, on its phase stability and Reid vapor pressure. Physicochemical characteristics of the developed fuel composition were studied. The results indicated that none of the possible classes of hydrocarbons could effectively solve the problems of phase stability and volatility of E85 fuel. Additionally, methyl tert-butyl ether (MTBE) was the only promising component. The composition, consisting of 70 % ethyl alcohol impurity concentrate and 30 % methyl tertiary butyl ether, met the requirements of American society for testing and materials (ASTM 5798) in almost all respects. A significant discrepancy is observed only in the water content, which is compensated by the great phase stability of the composition at low temperatures. In addition, this fuel composition is characterized by great potential competitiveness in Russian conditions and without fiscal support, which was proved by preliminary calculations of the cost of E85 fuel.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hegazy Rezk; Hegazy Rezk; Tareq Salameh; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Enas Taha Sayed; Enas Taha Sayed; Abdul Ghani Olabi; Abdul Ghani Olabi;Abstract In this work, nine case studies for hybrid energy systems (HESs) were considered and analyzed to supply a certain load. The load demand contains an electrical load and hydrogen production for industrial applications in Neom city. The simulation and optimization of the considered HESs are performed using HOMER Pro software. The obtained optimized results were very close for some cases based on the economic, environmental, and social assessment. Multicriteria decision-making based on a different approach of weight such as no priority, CRITIC, Entropy, and TOPSIS techniques were used to decide the best-case study among the different nine cases. Moreover, extra techniques such as Weighted Aggregated Sum Product WASPA, MOORA, and EDAS were used to confirm the TOPSIS technique's results. The results show that the case study contains solar PV, DG, and battery energy storage (BES) was the best case in terms of economic, environmental, and social assessment. The levelized costs of energy and hydrogen for the best HES were 0.4 $/kWh and 21 $, respectively. The CO2 emission was 45912 kg/year which equivalent to saving 118,074 gallons of diesel.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Tareq Salameh; Enas Taha Sayed; A. G. Olabi; Ismail I. Hdaib; Yazeed Allan; Malek Alkasrawi; Mohammad Ali Abdelkareem;Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials, including organic wastes, is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore, optimizing the operating parameters, such as the initial pH value, operating temperature, N/C ratio, and organic concentration (xylose), plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex, expensive, and lengthy. The present research used an experimental data asset, adaptive network fuzzy inference system (ANFIS) modeling, and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect, which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Fermentation arrow_drop_down FermentationOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2311-5637/8/10/483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Fermentation arrow_drop_down FermentationOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2311-5637/8/10/483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Saudi Arabia, Saudi ArabiaPublisher:Informa UK Limited Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Nidal Hilal; Seungho Kook; Noreddine Ghaffour; In S. Kim; Hak Yong Kim; M. Obaid; M. Obaid; M. Obaid;handle: 10754/659227
AbstractResearch on membrane technology to provide fresh water while considering inextricably linked energy issues has resulted in remarkable accomplishments in the production of membranes, such as...
Critical Reviews in ... arrow_drop_down Critical Reviews in Environmental Science and TechnologyArticle . 2019 . Peer-reviewedData sources: CrossrefCritical Reviews in Environmental Science and TechnologyJournalData sources: Microsoft Academic GraphKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Critical Reviews in ... arrow_drop_down Critical Reviews in Environmental Science and TechnologyArticle . 2019 . Peer-reviewedData sources: CrossrefCritical Reviews in Environmental Science and TechnologyJournalData sources: Microsoft Academic GraphKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Hussein M. Maghrabie; Mohammad Ali Abdelkareem; Abdul Hai Al-Alami; Mohamad Ramadan; +3 AuthorsHussein M. Maghrabie; Mohammad Ali Abdelkareem; Abdul Hai Al-Alami; Mohamad Ramadan; Emad Mushtaha; Tabbi Wilberforce; Abdul Ghani Olabi;Advances in building-integrated photovoltaic (BIPV) systems for residential and commercial purposes are set to minimize overall energy requirements and associated greenhouse gas emissions. The BIPV design considerations entail energy infrastructure, pertinent renewable energy sources, and energy efficiency provisions. In this work, the performance of roof/façade-based BIPV systems and the affecting parameters on cooling/heating loads of buildings are reviewed. Moreover, this work provides an overview of different categories of BIPV, presenting the recent developments and sufficient references, and supporting more successful implementations of BIPV for various globe zones. A number of available technologies decide the best selections, and make easy configuration of the BIPV, avoiding any difficulties, and allowing flexibility of design in order to adapt to local environmental conditions, and are adequate to important considerations, such as building codes, building structures and loads, architectural components, replacement and maintenance, energy resources, and all associated expenditure. The passive and active effects of both air-based and water-based BIPV systems have great effects on the cooling and heating loads and thermal comfort and, hence, on the electricity consumption.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
