- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FrancePublisher:MDPI AG Authors: Rafael Jiménez-Ocampo; María Denisse Montoya-Flores; Esperanza Herrera-Torres; Gerardo Pámanes-Carrasco; +8 AuthorsRafael Jiménez-Ocampo; María Denisse Montoya-Flores; Esperanza Herrera-Torres; Gerardo Pámanes-Carrasco; Jeyder Israel Arceo-Castillo; Sara Stephanie Valencia-Salazar; Jacobo Arango; Carlos Fernando Aguilar-Pérez; Luis Ramírez-Avilés; Francisco Javier Solorio-Sánchez; Ángel Trinidad Piñeiro-Vázquez; Juan Carlos Ku-Vera;In order to meet consumer needs, the livestock industry is increasingly seeking natural feed additives with the ability to improve the efficiency of nutrient utilization, alternatives to antibiotics, and mitigate methane emissions in ruminants. Chitosan (CHI) is a polysaccharide with antimicrobial capability against protozoa and Gram-positive and -negative bacteria, fungi, and yeasts while naringin (NA) is a flavonoid with antimicrobial and antioxidant properties. First, an in vitro gas production experiment was performed adding 0, 1.5, 3.0 g/kg of CHI and NA under a completely randomized design. The substrate containing forage and concentrate in a 70:30 ratio on a dry matter (DM) basis. Compounds increased the concentration of propionic acid, and a significant reduction in methane production was observed with the inclusion of CHI at 1.5 g/kg in in vitro experiments (p < 0.001). In a dry matter rumen degradability study for 96 h, there were no differences in potential and effective degradability. In the in vivo study, six crossbred heifers fitted with rumen cannulas were assigned to a 6 × 6 Latin square design according to the following treatments: control (CTL), no additive; chitosan (CHI1, 1.5 g/kg DMI); (CHI2, 3.0 g/kg DMI); naringin (NA1, 1.5 g/kg DMI); (NA2, 3.0 g/kg DMI) and a mixture of CHI and NA (1.5 + 1.5 g/kg DMI) given directly through the rumen cannula. Additives did not affect rumen fermentation (p > 0.05), DM intake and digestibility of (p > 0.05), and enteric methane emissions (p > 0.05). CHI at a concentration of 1.5 g/kg DM in in vitro experiments had a positive effect on fermentation pattern increasing propionate and reduced methane production. In contrast, in the in vivo studies, there was not a positive effect on rumen fermentation, nor in enteric methane production in crossbred heifers fed a basal ration of tropical grass.
Animals arrow_drop_down AnimalsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-2615/11/6/1599/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113846Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Animals arrow_drop_down AnimalsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-2615/11/6/1599/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113846Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Authors: Lucero Sarabia-Salgado; Francisco Solorio-Sánchez; Luis Ramírez-Avilés; Bruno José Rodrigues Alves; +4 AuthorsLucero Sarabia-Salgado; Francisco Solorio-Sánchez; Luis Ramírez-Avilés; Bruno José Rodrigues Alves; Juan Ku-Vera; Carlos Aguilar-Pérez; Segundo Urquiaga; Robert Michael Boddey;The objective was to evaluate milk production, N2-fixation and N transfer, forage yield and composition (under two cutting intervals) in a silvopastoral system (SPS) with Leucaena leucocephala-Megathyrsus maximus and M. maximus-monoculture (MMM) with crossbred cows in a completely randomized design. Forage yield in the SPS was 6490 and 6907 kg DM ha−1 for cutting intervals (CI) of 35 and 50 days. Forage yield for the MMM was 7284 and 10,843 kg DM ha−1, and forage crude protein (CP) was 29.0% and 26.1% for L. leucocephala, harvested at 35 and 50 days, respectively. CP for the associated M. maximus was 9.9% and 7.8% for CI 35 and 50 days, respectively, and for MMM was 7.4% and 8.4%, harvested at 35 and 50 days. Milk production was 4.7 kg cow−1 day−1 for cows grazing MMM and 7.4 kg cow−1 day−1 under SPS. Nitrogen fixation in L. leucocephala (%Ndfa) was estimated to be 89% and 95%, at 35 and 50 days, with an N2 transfer to the associated grass of 34.3% and 52.9%. SPS has the potential to fix and transfer important amounts of N2 to the associated grass, and increase forage CP content and milk production.
Animals arrow_drop_down AnimalsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-2615/10/4/734/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Animals arrow_drop_down AnimalsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-2615/10/4/734/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FrancePublisher:MDPI AG Authors: Rafael Jiménez-Ocampo; María Denisse Montoya-Flores; Esperanza Herrera-Torres; Gerardo Pámanes-Carrasco; +8 AuthorsRafael Jiménez-Ocampo; María Denisse Montoya-Flores; Esperanza Herrera-Torres; Gerardo Pámanes-Carrasco; Jeyder Israel Arceo-Castillo; Sara Stephanie Valencia-Salazar; Jacobo Arango; Carlos Fernando Aguilar-Pérez; Luis Ramírez-Avilés; Francisco Javier Solorio-Sánchez; Ángel Trinidad Piñeiro-Vázquez; Juan Carlos Ku-Vera;In order to meet consumer needs, the livestock industry is increasingly seeking natural feed additives with the ability to improve the efficiency of nutrient utilization, alternatives to antibiotics, and mitigate methane emissions in ruminants. Chitosan (CHI) is a polysaccharide with antimicrobial capability against protozoa and Gram-positive and -negative bacteria, fungi, and yeasts while naringin (NA) is a flavonoid with antimicrobial and antioxidant properties. First, an in vitro gas production experiment was performed adding 0, 1.5, 3.0 g/kg of CHI and NA under a completely randomized design. The substrate containing forage and concentrate in a 70:30 ratio on a dry matter (DM) basis. Compounds increased the concentration of propionic acid, and a significant reduction in methane production was observed with the inclusion of CHI at 1.5 g/kg in in vitro experiments (p < 0.001). In a dry matter rumen degradability study for 96 h, there were no differences in potential and effective degradability. In the in vivo study, six crossbred heifers fitted with rumen cannulas were assigned to a 6 × 6 Latin square design according to the following treatments: control (CTL), no additive; chitosan (CHI1, 1.5 g/kg DMI); (CHI2, 3.0 g/kg DMI); naringin (NA1, 1.5 g/kg DMI); (NA2, 3.0 g/kg DMI) and a mixture of CHI and NA (1.5 + 1.5 g/kg DMI) given directly through the rumen cannula. Additives did not affect rumen fermentation (p > 0.05), DM intake and digestibility of (p > 0.05), and enteric methane emissions (p > 0.05). CHI at a concentration of 1.5 g/kg DM in in vitro experiments had a positive effect on fermentation pattern increasing propionate and reduced methane production. In contrast, in the in vivo studies, there was not a positive effect on rumen fermentation, nor in enteric methane production in crossbred heifers fed a basal ration of tropical grass.
Animals arrow_drop_down AnimalsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-2615/11/6/1599/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113846Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Animals arrow_drop_down AnimalsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-2615/11/6/1599/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113846Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Authors: Lucero Sarabia-Salgado; Francisco Solorio-Sánchez; Luis Ramírez-Avilés; Bruno José Rodrigues Alves; +4 AuthorsLucero Sarabia-Salgado; Francisco Solorio-Sánchez; Luis Ramírez-Avilés; Bruno José Rodrigues Alves; Juan Ku-Vera; Carlos Aguilar-Pérez; Segundo Urquiaga; Robert Michael Boddey;The objective was to evaluate milk production, N2-fixation and N transfer, forage yield and composition (under two cutting intervals) in a silvopastoral system (SPS) with Leucaena leucocephala-Megathyrsus maximus and M. maximus-monoculture (MMM) with crossbred cows in a completely randomized design. Forage yield in the SPS was 6490 and 6907 kg DM ha−1 for cutting intervals (CI) of 35 and 50 days. Forage yield for the MMM was 7284 and 10,843 kg DM ha−1, and forage crude protein (CP) was 29.0% and 26.1% for L. leucocephala, harvested at 35 and 50 days, respectively. CP for the associated M. maximus was 9.9% and 7.8% for CI 35 and 50 days, respectively, and for MMM was 7.4% and 8.4%, harvested at 35 and 50 days. Milk production was 4.7 kg cow−1 day−1 for cows grazing MMM and 7.4 kg cow−1 day−1 under SPS. Nitrogen fixation in L. leucocephala (%Ndfa) was estimated to be 89% and 95%, at 35 and 50 days, with an N2 transfer to the associated grass of 34.3% and 52.9%. SPS has the potential to fix and transfer important amounts of N2 to the associated grass, and increase forage CP content and milk production.
Animals arrow_drop_down AnimalsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-2615/10/4/734/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Animals arrow_drop_down AnimalsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-2615/10/4/734/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
