- home
- Advanced Search
Filters
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Tammeorg, Olga; Kragh, Theis; Nürnberg, Gertrud K.; Carvalho, Laurence; Huser, Brian; Jilbert, Tom; Augustyniak-Tunowska, Renata; Dadi, Tallent; Friese, Kurt; Grinberga, Laura; Grochowska, Jolanta K.; Haande, Sigrid; Härkönen, Laura H.; Hupfer, Michael; Irvine, Kenneth; Jamwal, Priyanka; Klamt, Anna Marie; Liu, Zhengwen; McElarney, Yvonne; Mucci, Maira; Özkundakci, Deniz; Ozoliņš, Dāvis; Polauke, Emma; Portilla, Karen; Reitzel, Kasper; Rinke, Karsten; Sammalkorpi, Ilkka; Sarvala, Jouko; Schampera, Charlotte; Silva, Antonio M.M.; Skuja, Agnija; Spears, Bryan M.; Tammeorg, Priit; Wang, Haijun; Zhang, Peiyu; Lürling, Miquel;Sustainable lake restoration has been introduced recently as a strategy to address ecological, economic, and social challenges in nutrient management. The strategy would benefit at least 40 % of the world's lakes through addressing eutrophication, and the impact becomes even broader if we consider the complex nature of eutrophication (its linkage to multiple environmental problems). This approach involves: 1) demonstrating broader social and economic benefits, 2) integrating circular economies, and 3) directly engaging local communities in co-developing restoration goals, targets and monitoring. The current study explores opportunities to advance sustainable lake restoration using a well-established model that fosters interaction among restoration stakeholders. We assessed each model step for sustainability needs, identifying knowledge gaps and key factors for future success. We emphasize the need for a better understanding of the linkages between eutrophication and other environmental problems, proper monitoring programs to demonstrate broader restoration benefits, effective system analysis tools, sustainable nutrient recycling measures and accurate realization, and thorough documentation for life-cycle assessments. Achieving these goals requires significant policy and financing transformations, continuous engagement, and close collaboration among all stakeholders.
Research@WUR arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUS, UKRI | UK Status, Change and Pro...EC| eLTER PLUS ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)D. A. Beaumont; Don Monteith; Herman Hummel; Henning Meesenburg; Audrey Alignier; Filipe Martinho; D. Pallett; Vesela Evtimova; Liat Hadar; Renate Alber; Patricia Cardoso; Francesca Pilotto; Francesca Pilotto; Bogdan Jaroszewicz; Ricardo García-González; Susanne C. Schneider; Radoslav Stanchev; Dāvis Ozoliņš; Luc Barbaro; Daniel Gómez García; Anne Thimonier; Sue Benham; Marcus Schaub; Tanja Pipan; Bachisio Mario Padedda; Karline Soetaert; Juha Pöyry; Daniel Oro; Reima Leinonen; Lisa Sundqvist; Lubos Halada; Gunther Van Ryckegem; Ingrid Kröncke; Agnija Skuja; Elisa Camatti; Gert Van Hoey; Gert Everaert; Christopher Andrews; Vincent Bretagnolle; Miguel Ângelo Pardal; Marco Pansera; Henrik Kalivoda; Ingolf Kühn; Ingolf Kühn; Natalie Beenaerts; Stefan Stoll; Stefan Stoll; Rita Adrian; Thomas C. Jensen; Boris P. Nikolov; Kaisa-Leena Huttunen; David S. Boukal; David S. Boukal; Bruno J. Ens; Roberto Canullo; Stefano Minerbi; Ulf Grandin; Gunta Spriņģe; Julia S. Meyer; Heidrun Feuchtmayr; Samuel Vorhauser; Melinda Halassy; Bruno Petriccione; Jerzy M. Gutowski; Jenni A. Stockan; S. Schafer; Peter Haase; Peter Haase; Jaana Bäck; Inger Kappel Schmidt; Marcel E. Visser;pmid: 32661354
pmc: PMC7359034
AbstractLocal biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-020-17171-yData sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2020 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-020-17171-yData sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 394 citations 394 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 45visibility views 45 download downloads 74 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-020-17171-yData sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2020 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-020-17171-yData sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Jourdan, Jonas; O'Hara, Robert B.; Bottarin, Roberta; Huttunen, Kaisa-Leena; Kuemmerlen, Mathias; Monteith, Don; Muotka, Timo; Ozolins, Davis; Paavola, Riku; Pilotto, Francesca; Springe, Gunta; Skuja, Agnija; Sundermann, Andrea; Tonkin, Jonathan D.; Haase; Peter;pmid: 29195206
Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Tammeorg, Olga; Kragh, Theis; Nürnberg, Gertrud K.; Carvalho, Laurence; Huser, Brian; Jilbert, Tom; Augustyniak-Tunowska, Renata; Dadi, Tallent; Friese, Kurt; Grinberga, Laura; Grochowska, Jolanta K.; Haande, Sigrid; Härkönen, Laura H.; Hupfer, Michael; Irvine, Kenneth; Jamwal, Priyanka; Klamt, Anna Marie; Liu, Zhengwen; McElarney, Yvonne; Mucci, Maira; Özkundakci, Deniz; Ozoliņš, Dāvis; Polauke, Emma; Portilla, Karen; Reitzel, Kasper; Rinke, Karsten; Sammalkorpi, Ilkka; Sarvala, Jouko; Schampera, Charlotte; Silva, Antonio M.M.; Skuja, Agnija; Spears, Bryan M.; Tammeorg, Priit; Wang, Haijun; Zhang, Peiyu; Lürling, Miquel;Sustainable lake restoration has been introduced recently as a strategy to address ecological, economic, and social challenges in nutrient management. The strategy would benefit at least 40 % of the world's lakes through addressing eutrophication, and the impact becomes even broader if we consider the complex nature of eutrophication (its linkage to multiple environmental problems). This approach involves: 1) demonstrating broader social and economic benefits, 2) integrating circular economies, and 3) directly engaging local communities in co-developing restoration goals, targets and monitoring. The current study explores opportunities to advance sustainable lake restoration using a well-established model that fosters interaction among restoration stakeholders. We assessed each model step for sustainability needs, identifying knowledge gaps and key factors for future success. We emphasize the need for a better understanding of the linkages between eutrophication and other environmental problems, proper monitoring programs to demonstrate broader restoration benefits, effective system analysis tools, sustainable nutrient recycling measures and accurate realization, and thorough documentation for life-cycle assessments. Achieving these goals requires significant policy and financing transformations, continuous engagement, and close collaboration among all stakeholders.
Research@WUR arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUS, UKRI | UK Status, Change and Pro...EC| eLTER PLUS ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)D. A. Beaumont; Don Monteith; Herman Hummel; Henning Meesenburg; Audrey Alignier; Filipe Martinho; D. Pallett; Vesela Evtimova; Liat Hadar; Renate Alber; Patricia Cardoso; Francesca Pilotto; Francesca Pilotto; Bogdan Jaroszewicz; Ricardo García-González; Susanne C. Schneider; Radoslav Stanchev; Dāvis Ozoliņš; Luc Barbaro; Daniel Gómez García; Anne Thimonier; Sue Benham; Marcus Schaub; Tanja Pipan; Bachisio Mario Padedda; Karline Soetaert; Juha Pöyry; Daniel Oro; Reima Leinonen; Lisa Sundqvist; Lubos Halada; Gunther Van Ryckegem; Ingrid Kröncke; Agnija Skuja; Elisa Camatti; Gert Van Hoey; Gert Everaert; Christopher Andrews; Vincent Bretagnolle; Miguel Ângelo Pardal; Marco Pansera; Henrik Kalivoda; Ingolf Kühn; Ingolf Kühn; Natalie Beenaerts; Stefan Stoll; Stefan Stoll; Rita Adrian; Thomas C. Jensen; Boris P. Nikolov; Kaisa-Leena Huttunen; David S. Boukal; David S. Boukal; Bruno J. Ens; Roberto Canullo; Stefano Minerbi; Ulf Grandin; Gunta Spriņģe; Julia S. Meyer; Heidrun Feuchtmayr; Samuel Vorhauser; Melinda Halassy; Bruno Petriccione; Jerzy M. Gutowski; Jenni A. Stockan; S. Schafer; Peter Haase; Peter Haase; Jaana Bäck; Inger Kappel Schmidt; Marcel E. Visser;pmid: 32661354
pmc: PMC7359034
AbstractLocal biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-020-17171-yData sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2020 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-020-17171-yData sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 394 citations 394 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 45visibility views 45 download downloads 74 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-020-17171-yData sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2020 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-020-17171-yData sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Jourdan, Jonas; O'Hara, Robert B.; Bottarin, Roberta; Huttunen, Kaisa-Leena; Kuemmerlen, Mathias; Monteith, Don; Muotka, Timo; Ozolins, Davis; Paavola, Riku; Pilotto, Francesca; Springe, Gunta; Skuja, Agnija; Sundermann, Andrea; Tonkin, Jonathan D.; Haase; Peter;pmid: 29195206
Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
