- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
Country
Language
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object 2018Publisher:Elsevier BV Frau C.; Maggio E.; Poggi F.; Melis E.; Floris F.; Orru P. F.;handle: 11584/337759
Abstract This paper presents a preliminary evaluation of the technical and economic feasibility of a low-enthalpy geothermal system for air conditioning and its integration with other systems, including a photovoltaic plant and an electrical storage system. The pilot building is a research center located in the southern side of the Mediterranean basin (Sardinia, Italy). Preliminarily, the main geological, hydrogeological and geothermal characteristics of the area were analyzed. Then, an energetic assessment of the building and its plants was performed. The hourly production of a photovoltaic plant already designed for the building was assessed. To improve the energy efficiency and the thermal energy self-consumption, an alternative thermal generation plant was proposed to replace the existing air conditioning system: a water-water heat pump coupled with a low-enthalpy geothermal probe (vertical configuration), to be embedded into the ground or placed into an existing groundwater well. The feasibility of electric storage was evaluated by considering a system capacity of 100 kWh to temporarily store and self-consume the electricity overproduced by the photovoltaic plant. A preliminary economic assessment showed the viability of the photovoltaic system. The 100 kWh-capacity electric storage will increase the self-production percentage, but it is not economically affordable. The replacement of the current air-water heat pumps with one water-water heat pump will be economically convenient if coupled with a groundwater geothermal probe, but the solution of a vertical probe embedded into the ground is unsustainable, due to high drilling costs.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 9 Powered by
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Springer Science and Business Media LLC Authors: Melis E.; Vincis A.; Orrù P. F.;handle: 11584/337748
The paper focuses on the progress related to models and approaches for an optimal design and management of biomass supply chains. A literature review has been conducted, and previous review papers have been used as bases. Do most of the current models adopt the same decision level, mathematical methodology and type of objective of those identified by previous reviews? Are there any innovative approaches to revitalise the considered research topic? Most of the works published in 2017 and in early 2018 reflect the past literature reviews; regrettably, few relevant advances have been achieved in the recent period to face up the major gaps. Innovative works apply Life Cycle Assessment, Multi-Criteria Analysis, CyberGIS or Agent-Based approaches to biomass supply chain optimisation. Future research should address, for instance, sustainability of biomass supply chains through a more comprehensive approach including economic, environmental, social and policy-related issues, integration of the decision levels to meet the needs of different stakeholders.
Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:UKRI | HIPER PileUKRI| HIPER PileMohamed Shameer Peer; Tsega Y. Melesse; Pier Francesco Orrù; Mattia Braggio; Mario Petrollese;doi: 10.3390/en18082083
handle: 11584/443013
The growing demand for efficient and sustainable energy solutions underscores the importance of advancing solar energy technologies, particularly Concentrated Solar Power (CSP) systems. This review presents a structured evaluation of two key innovation domains in CSP: the application of nanofluids and the adoption of Industry 4.0 technologies. The first part analyzes experimental and simulation-based studies on nanofluid-enhanced CSP systems, covering four major collector types—parabolic trough, solar power tower, solar dish, and Fresnel reflectors. Nanofluids have been shown to significantly enhance thermal efficiency, with hybrid formulations offering the greatest improvements. The second part examines the role of Industry 4.0 technologies—including artificial intelligence (AI), machine learning (ML), and digital twins (DT)—in improving CSP system monitoring, performance prediction, and operational reliability. Although a few recent studies explore the combined use of nanofluids and Industry 4.0 tools in CSP systems, most research addresses these areas independently. This review identifies this lack of integration as a gap in the current literature. By presenting separate yet complementary analyses, the study offers a comprehensive overview of emerging pathways for CSP optimization. Key research challenges and future directions are highlighted, particularly in nanofluid stability, system cost-efficiency, and digital implementation at scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2014Publisher:ETA-Florence Renewable Energies MELIS, EMANUELA; Asquer C; Pistis A; ORRU', PIER FRANCESCO; Scano E.;handle: 11584/78552 , 11584/103323
This article presents the results of an environmental and technical evaluation model for the development of wood-energy supply chains in Ogliastra (Sardinia, Italy). A GIS methodology has been developed for the annual biomass estimate and laboratory analyses (proximate analysis, ultimate analysis, heating value determination) have been performed on 58 samples of conifers, broadleaves and maquis/shrubs. The total maximum energetic potential of the study area has been calculated and, by intersecting the main characteristics of the best cogeneration technologies, the laboratory results and the local biomass availability in a Multiple Attribute Decision Making problem, the best suited plant configuration has been identified. Proceedings of the 22nd European Biomass Conference and Exhibition, 23-26 June 2014, Hamburg, Germany, pp. 192-202
https://dx.doi.org/1... arrow_drop_down Archivio istituzionale della ricerca - Università di CagliariConference object . 2014Archivio istituzionale della ricerca - Università di CagliariConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Archivio istituzionale della ricerca - Università di CagliariConference object . 2014Archivio istituzionale della ricerca - Università di CagliariConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:ETA-Florence Renewable Energies Authors: MELIS E.; ORRÙ P. F.; PILO C.; URAS G.;handle: 11584/250852
This paper tackles the issue of using the Life Cycle Assessment (LCA) methodology as a decision making tool for the sustainable design of wood-energy supply chains in the Mediterranean area. This work is based on linking forest protection, its sustainable use to meet the local energy demand, efficiency and economic/environmental sustainability of plants. This study integrated the LCA and sustainable design of supply chains, by applying it to a public forest located in Southern Italy. Environmental impacts were estimated for each phase of the supply chain, to identify the most critical processes to be improved for an increased sustainability. The LCA allowed identifying the most impactful phases, as well as recognizing the most relevant environmental impact categories, by performing also an uncertainty analysis on the results. It emerged that the wood chipping is the most impactful phase of the designed supply chain, and the Climate Change is the most impactful environmental impact category on the Areas of Protection (AoP). This scenario is more sustainable than a similar one based on fossil fuels. Proceedings of the 26th European Biomass Conference and Exhibition, 14-17 May 2018, Copenhagen, Denmark, pp. 1324-1335
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Tsega Y. Melesse; Mohamed Shameer Peer; Suganthi Ramasamy; Vigneselvan Sivasubramaniyam; +2 AuthorsTsega Y. Melesse; Mohamed Shameer Peer; Suganthi Ramasamy; Vigneselvan Sivasubramaniyam; Mattia Braggio; Pier Francesco Orru';doi: 10.3390/en18143660
handle: 11584/449565
The bakery industry is undergoing a profound digital transformation driven by the increasing need for enhanced energy efficiency, operational resilience, and a commitment to environmental sustainability. Digital Twin (DT) technology, recognized as a fundamental component of Industry 4.0, provides advanced capabilities for intelligent energy management across bakery operations. This paper utilizes a narrative and integrative review approach, conceptually integrating emerging developments in using DT with respect toenergy management in the baking industry, including real-time energy monitoring, predictive maintenance, dynamic optimization of production processes, and the seamless integration of renewable energy sources. The study underscores the transformative benefits of adopting DT technologies, such as improvements in energy utilization, greater equipment reliability, increased operational transparency, and stronger alignment with global sustainability objectives. It also critically examines the technical, organizational, and financial barriers limiting broader adoption, particularly among small and medium-sized enterprises (SMEs). Future research directions are identified, emphasizing the potential of artificial intelligence-driven DTs, the adoption of edge computing, the development of scalable and modular platforms, and the necessity of supportive policy frameworks. By integrating DT technologies, bakeries can shift from traditional reactive energy practices to proactive, data-driven strategies, paving the way for greater competitiveness, operational excellence, and a sustainable future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV Authors: FLORIS, FRANCESCO; ILEMIN, BULUT; ORRU', PIER FRANCESCO;handle: 11584/198074
AbstractComputer codes are widely used to predict heat transfer fields. Modeling is accomplished in multidimensional media with homogenous or not homogenous thermal conductivity, with or without volume heat sources and enthalpy flux.This paper compares the analytical solution of temperature fields in a few physical cases such as aliment cakes, capacitors, gas turbine blades, tanks with infinite element computer results and experimental results.The analytical solution of heat transfer partial differential equations presented in this paper appears in the form of the sum of effects. One of them is an infinite series in term of eigenvalues that is easily managed through mathematical commercial codes available even for palmar calculations. A comparison with experimental results shows that the concept of analytical solution has application in many physical phenomena without going to the complexity of computer code modeling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered by
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Conference object 2018Publisher:Elsevier BV Frau C.; Maggio E.; Poggi F.; Melis E.; Floris F.; Orru P. F.;handle: 11584/337759
Abstract This paper presents a preliminary evaluation of the technical and economic feasibility of a low-enthalpy geothermal system for air conditioning and its integration with other systems, including a photovoltaic plant and an electrical storage system. The pilot building is a research center located in the southern side of the Mediterranean basin (Sardinia, Italy). Preliminarily, the main geological, hydrogeological and geothermal characteristics of the area were analyzed. Then, an energetic assessment of the building and its plants was performed. The hourly production of a photovoltaic plant already designed for the building was assessed. To improve the energy efficiency and the thermal energy self-consumption, an alternative thermal generation plant was proposed to replace the existing air conditioning system: a water-water heat pump coupled with a low-enthalpy geothermal probe (vertical configuration), to be embedded into the ground or placed into an existing groundwater well. The feasibility of electric storage was evaluated by considering a system capacity of 100 kWh to temporarily store and self-consume the electricity overproduced by the photovoltaic plant. A preliminary economic assessment showed the viability of the photovoltaic system. The 100 kWh-capacity electric storage will increase the self-production percentage, but it is not economically affordable. The replacement of the current air-water heat pumps with one water-water heat pump will be economically convenient if coupled with a groundwater geothermal probe, but the solution of a vertical probe embedded into the ground is unsustainable, due to high drilling costs.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 9 Powered by
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Springer Science and Business Media LLC Authors: Melis E.; Vincis A.; Orrù P. F.;handle: 11584/337748
The paper focuses on the progress related to models and approaches for an optimal design and management of biomass supply chains. A literature review has been conducted, and previous review papers have been used as bases. Do most of the current models adopt the same decision level, mathematical methodology and type of objective of those identified by previous reviews? Are there any innovative approaches to revitalise the considered research topic? Most of the works published in 2017 and in early 2018 reflect the past literature reviews; regrettably, few relevant advances have been achieved in the recent period to face up the major gaps. Innovative works apply Life Cycle Assessment, Multi-Criteria Analysis, CyberGIS or Agent-Based approaches to biomass supply chain optimisation. Future research should address, for instance, sustainability of biomass supply chains through a more comprehensive approach including economic, environmental, social and policy-related issues, integration of the decision levels to meet the needs of different stakeholders.
Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Current Sustainable/... arrow_drop_down Current Sustainable/Renewable Energy ReportsArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:UKRI | HIPER PileUKRI| HIPER PileMohamed Shameer Peer; Tsega Y. Melesse; Pier Francesco Orrù; Mattia Braggio; Mario Petrollese;doi: 10.3390/en18082083
handle: 11584/443013
The growing demand for efficient and sustainable energy solutions underscores the importance of advancing solar energy technologies, particularly Concentrated Solar Power (CSP) systems. This review presents a structured evaluation of two key innovation domains in CSP: the application of nanofluids and the adoption of Industry 4.0 technologies. The first part analyzes experimental and simulation-based studies on nanofluid-enhanced CSP systems, covering four major collector types—parabolic trough, solar power tower, solar dish, and Fresnel reflectors. Nanofluids have been shown to significantly enhance thermal efficiency, with hybrid formulations offering the greatest improvements. The second part examines the role of Industry 4.0 technologies—including artificial intelligence (AI), machine learning (ML), and digital twins (DT)—in improving CSP system monitoring, performance prediction, and operational reliability. Although a few recent studies explore the combined use of nanofluids and Industry 4.0 tools in CSP systems, most research addresses these areas independently. This review identifies this lack of integration as a gap in the current literature. By presenting separate yet complementary analyses, the study offers a comprehensive overview of emerging pathways for CSP optimization. Key research challenges and future directions are highlighted, particularly in nanofluid stability, system cost-efficiency, and digital implementation at scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2014Publisher:ETA-Florence Renewable Energies MELIS, EMANUELA; Asquer C; Pistis A; ORRU', PIER FRANCESCO; Scano E.;handle: 11584/78552 , 11584/103323
This article presents the results of an environmental and technical evaluation model for the development of wood-energy supply chains in Ogliastra (Sardinia, Italy). A GIS methodology has been developed for the annual biomass estimate and laboratory analyses (proximate analysis, ultimate analysis, heating value determination) have been performed on 58 samples of conifers, broadleaves and maquis/shrubs. The total maximum energetic potential of the study area has been calculated and, by intersecting the main characteristics of the best cogeneration technologies, the laboratory results and the local biomass availability in a Multiple Attribute Decision Making problem, the best suited plant configuration has been identified. Proceedings of the 22nd European Biomass Conference and Exhibition, 23-26 June 2014, Hamburg, Germany, pp. 192-202
https://dx.doi.org/1... arrow_drop_down Archivio istituzionale della ricerca - Università di CagliariConference object . 2014Archivio istituzionale della ricerca - Università di CagliariConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Archivio istituzionale della ricerca - Università di CagliariConference object . 2014Archivio istituzionale della ricerca - Università di CagliariConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:ETA-Florence Renewable Energies Authors: MELIS E.; ORRÙ P. F.; PILO C.; URAS G.;handle: 11584/250852
This paper tackles the issue of using the Life Cycle Assessment (LCA) methodology as a decision making tool for the sustainable design of wood-energy supply chains in the Mediterranean area. This work is based on linking forest protection, its sustainable use to meet the local energy demand, efficiency and economic/environmental sustainability of plants. This study integrated the LCA and sustainable design of supply chains, by applying it to a public forest located in Southern Italy. Environmental impacts were estimated for each phase of the supply chain, to identify the most critical processes to be improved for an increased sustainability. The LCA allowed identifying the most impactful phases, as well as recognizing the most relevant environmental impact categories, by performing also an uncertainty analysis on the results. It emerged that the wood chipping is the most impactful phase of the designed supply chain, and the Climate Change is the most impactful environmental impact category on the Areas of Protection (AoP). This scenario is more sustainable than a similar one based on fossil fuels. Proceedings of the 26th European Biomass Conference and Exhibition, 14-17 May 2018, Copenhagen, Denmark, pp. 1324-1335
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Tsega Y. Melesse; Mohamed Shameer Peer; Suganthi Ramasamy; Vigneselvan Sivasubramaniyam; +2 AuthorsTsega Y. Melesse; Mohamed Shameer Peer; Suganthi Ramasamy; Vigneselvan Sivasubramaniyam; Mattia Braggio; Pier Francesco Orru';doi: 10.3390/en18143660
handle: 11584/449565
The bakery industry is undergoing a profound digital transformation driven by the increasing need for enhanced energy efficiency, operational resilience, and a commitment to environmental sustainability. Digital Twin (DT) technology, recognized as a fundamental component of Industry 4.0, provides advanced capabilities for intelligent energy management across bakery operations. This paper utilizes a narrative and integrative review approach, conceptually integrating emerging developments in using DT with respect toenergy management in the baking industry, including real-time energy monitoring, predictive maintenance, dynamic optimization of production processes, and the seamless integration of renewable energy sources. The study underscores the transformative benefits of adopting DT technologies, such as improvements in energy utilization, greater equipment reliability, increased operational transparency, and stronger alignment with global sustainability objectives. It also critically examines the technical, organizational, and financial barriers limiting broader adoption, particularly among small and medium-sized enterprises (SMEs). Future research directions are identified, emphasizing the potential of artificial intelligence-driven DTs, the adoption of edge computing, the development of scalable and modular platforms, and the necessity of supportive policy frameworks. By integrating DT technologies, bakeries can shift from traditional reactive energy practices to proactive, data-driven strategies, paving the way for greater competitiveness, operational excellence, and a sustainable future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV Authors: FLORIS, FRANCESCO; ILEMIN, BULUT; ORRU', PIER FRANCESCO;handle: 11584/198074
AbstractComputer codes are widely used to predict heat transfer fields. Modeling is accomplished in multidimensional media with homogenous or not homogenous thermal conductivity, with or without volume heat sources and enthalpy flux.This paper compares the analytical solution of temperature fields in a few physical cases such as aliment cakes, capacitors, gas turbine blades, tanks with infinite element computer results and experimental results.The analytical solution of heat transfer partial differential equations presented in this paper appears in the form of the sum of effects. One of them is an infinite series in term of eigenvalues that is easily managed through mathematical commercial codes available even for palmar calculations. A comparison with experimental results shows that the concept of analytical solution has application in many physical phenomena without going to the complexity of computer code modeling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered by
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
