Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
63 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salman Raza Naqvi; Suzana Yusup; Mohd Fadhil Nuruddin; Noridah Osman; +1 Authors

    Rice husk is considered as a massive agricultural lignocellulosic biomass residue for the production of bio-based fuels and chemicals products. The purpose of this study is to investigate the physiochemical properties of the pyrolysis-oil derived from wet and dried rice husk fast pyrolysis process. The experiments were performed in a drop type fixed-bed pyrolyzer at the pyrolysis temperature of 350 to 600 °C. The products, char, pyrolysis-oil and gas, yield are investigated. The pyrolysis-oil derived from dried rice husk contained higher Carbon and Hydrogen and less oxygen contents than the pyrolysis-oil obtained from wet rice husk. FT-IR results showed the oxygenated compounds present in both pyrolysis-oil. The pyrolysis oil from dried rice husk has higher concentration of hydrocarbons as compared to wet rice husk pyrolysis-oil. The dried rice husk pyrolysis-oil produced more phenols and less carboxylic acid as compared to wet rice husk pyrolysis-oil at 500 °C. More volatile released in dried rice husk conversion produced more volatile compounds. These findings suggest that the original moisture present in biomass samples is the major influencing parameter on the thermal degradation of biomass during fast pyrolysis process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Mechanics an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Mechanics and Materials
    Article . 2014 . Peer-reviewed
    License: Trans Tech Publications Copyright and Content Usage Policy
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Mechanics an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Mechanics and Materials
      Article . 2014 . Peer-reviewed
      License: Trans Tech Publications Copyright and Content Usage Policy
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Arslan Khan; Imtiaz Ali; Wasif Farooq; Salman Raza Naqvi; +5 Authors

    L'élimination et la gestion des boues d'épuration des tanneries est un enjeu difficile pour les industries du cuir en raison de leurs effets néfastes sur l'environnement. Dans cette étude, la caractérisation et l'évaluation détaillées à l'aide de paramètres cinétiques et thermodynamiques des boues d'épuration de tannerie dans un environnement de combustion ont été utilisées. Des méthodes sans modèle d'isoconversion comme Ozawa-Flynn-Wall (OFW), Friedman et Kissinger-Akahira-Sunose (KAS) ont été utilisées pour étudier la cinétique et les paramètres thermodynamiques dans l'environnement de l'air. Les énergies d'activation (Ea) pour le Friedman, le KAS et l'OFW ont été rapportées. Les courbes DTG à la vitesse de chauffe de 5, 10, 20 et 40 °C/min montrent les conversions diversifiées en trois étapes majeures. Les valeurs Ea pour les gammes de modèles sont Friedman (148,96 kJ/mol-395,23 kJ/mol), KAS (169,65 kJ/mol-383,75 kJ/mol) et OFW (176,44 kJ/mol-377,85 kJ/mol). L'Ea moyen pour le Friedman est de 226,04 kJ/mol tandis que pour KAS et OFW, l'Ea moyen est de 230,71 kJ/mol et 230,11 kJ/mol. De plus, les valeurs de ΔH, ΔG et ΔS ont été analysées. En outre, la distribution de fréquence en appliquant le modèle DAEM est étudiée, et il y a six pseudo-composants impliqués dans la distribution de fréquence pour la combustion. Pour la prédiction de la dégradation thermique des boues d'épuration de la tannerie, un réseau neuronal artificiel (RNA) du modèle MLP-3-7-1 a été utilisé. Ce modèle montre qu'il existe un bon accord entre les valeurs expérimentales et les valeurs prédites. Dans l'ensemble, cette étude souligne l'importance de l'ANN pour la prédiction du comportement de combustion de la biomasse avec plus de précision. La eliminación y la gestión de los lodos de depuración de las curtidurías es un problema difícil para las industrias del cuero debido a sus efectos adversos sobre el medio ambiente. En este estudio se empleó la caracterización y evaluación detallada utilizando parámetros cinéticos y termodinámicos de los lodos de depuradora de curtiduría en ambiente de combustión. Se emplearon métodos sin modelos isoconversionales como Ozawa-Flynn-Wall (OFW), Friedman y Kissinger-Akahira-Sunose (KAS) para investigar la cinética y los parámetros termodinámicos en el ambiente aéreo. Se informaron las energías de activación (Ea) para Friedman, KAS y OFW. Las curvas DTG a la velocidad de calentamiento de 5, 10, 20 y 40 °C/min muestran las conversiones diversificadas en tres etapas principales. Los valores de Ea para los rangos del modelo son Friedman (148.96 kJ/mol-395.23 kJ/mol), KAS (169.65 kJ/mol-383.75 kJ/mol) y OFW (176.44 kJ/mol-377.85 kJ/mol). La Ea media para Friedman es de 226,04 kJ/mol, mientras que para KAS y OFW la Ea media es de 230,71 kJ/mol y 230,11 kJ/mol. Además, se analizaron los valores de ΔH, ΔG y ΔS. Además, se investiga la distribución de frecuencias mediante la aplicación del modelo DAEM, y hay seis pseudocomponentes involucrados en la distribución de frecuencias para la combustión. Para la predicción de la degradación térmica de los lodos de depuradora de la curtiduría se utilizó una red neuronal artificial (ANN) del modelo MLP-3-7-1. Este modelo muestra que existe una buena concordancia entre los valores experimentales y los pronosticados. En general, este estudio destaca la importancia de la ANN para la predicción del comportamiento de combustión de la biomasa con mayor precisión. The disposal and the management of sewage sludge from tanneries is a challenging issue for the leather industries because of their adverse effect on the environment. In this study the detailed characterization and assessment using kinetic and thermodynamic parameters of the tannery sewage sludge in combustion environment was employed. Isoconversional model-free methods like Ozawa-Flynn-Wall (OFW), Friedman and Kissinger-Akahira-Sunose (KAS) were employed to investigate the kinetics and the thermodynamic parameters in the air environment. Activation energies (Ea) for the Friedman, KAS and OFW were reported. The DTG curves at the heating rate of 5, 10, 20 and 40 °C/min show the diversified conversions in three major stages. The Ea values for the model ranges are Friedman (148.96 kJ/mol-395.23 kJ/mol), KAS (169.65 kJ/mol-383.75 kJ/mol) and OFW (176.44 kJ/mol-377.85 kJ/mol). The average Ea for the Friedman is 226.04 kJ/mol while for KAS and OFW the average Ea is 230.71 kJ/mol and 230.11 kJ/mol. Moreover, the values of ΔH, ΔG, and ΔS were analysed. Furthermore, the frequency distribution by applying the DAEM model is investigated, and there are six pseudo-components involved in the frequency distribution for combustion. For the thermal degradation prediction of the sewage sludge from the tannery, an artificial neural network (ANN) of the MLP-3-7-1 model was used. This model shows that there is good agreement between the experimental and the predicted values. Overall, this study highlights the importance of the ANN for the prediction of combustion behaviour of biomass with more accuracy. يمثل التخلص من حمأة الصرف الصحي وإدارتها من المدابغ مشكلة صعبة بالنسبة للصناعات الجلدية بسبب تأثيرها السلبي على البيئة. في هذه الدراسة، تم استخدام التوصيف والتقييم التفصيليين باستخدام المعلمات الحركية والديناميكية الحرارية لحمأة المجاري المدبغة في بيئة الاحتراق. تم استخدام طرق خالية من النماذج المتساوية مثل Ozawa - Flynn - Wall (OFW) و Friedman و Kissinger - Akahira - Sunose (KAS) للتحقيق في الحركية والمعلمات الديناميكية الحرارية في بيئة الهواء. تم الإبلاغ عن طاقات التنشيط (EA) لـ Friedman و KAS و OFW. تُظهر منحنيات DTG بمعدل تسخين 5 و 10 و 20 و 40 درجة مئوية/دقيقة التحويلات المتنوعة في ثلاث مراحل رئيسية. قيم Ea لنطاقات النموذج هي Friedman (148.96 kJ/mol-395.23 kJ/mol) و KAS (169.65 kJ/mol-383.75 kJ/mol) و OFW (176.44 kJ/mol-377.85 kJ/mol). يبلغ متوسط Ea لـ Friedman 226.04 كيلو جول/مول بينما يبلغ متوسط Ea لـ KAS و OFW 230.71 كيلو جول/مول و 230.11 كيلو جول/مول. علاوة على ذلك، تم تحليل قيم ΔH و ΔG و ΔS. علاوة على ذلك، يتم التحقيق في توزيع التردد من خلال تطبيق نموذج DAEM، وهناك ستة مكونات زائفة تشارك في توزيع التردد للاحتراق. للتنبؤ بالتدهور الحراري لحمأة الصرف الصحي من المدبغة، تم استخدام شبكة عصبية اصطناعية (ANN) من نموذج MLP -3-7-1. يوضح هذا النموذج أن هناك اتفاقًا جيدًا بين القيم التجريبية والمتوقعة. بشكل عام، تسلط هذه الدراسة الضوء على أهمية ANN للتنبؤ بسلوك الاحتراق للكتلة الحيوية بدقة أكبر.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Case Studies in Thermal Engineering
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    SSRN Electronic Journal
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    https://dx.doi.org/10.60692/k9...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.60692/16...
    Other literature type . 2022
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Case Studies in Thermal Engineering
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      SSRN Electronic Journal
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      https://dx.doi.org/10.60692/k9...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.60692/16...
      Other literature type . 2022
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Yoshimitu Uemura; Y Sugiur; Suzana Yusup; Naoki Nishiyama; +3 Authors

    AbstractCatalytic upgrading of paddy husk was performed over 10-MR zeolites (MCM-22, ITQ-2 and ZSM-5) in a drop type fixed-bed reactor. This work investigated the role of structure and acidity of zeolites on pyrolysis-oil yield and degree of deoxygenation. Catalytic pyrolysis experiments were carried out at the catalyst/biomass ratio (0.05 -0.5) at temperature of 450°C. The oil yield decreased by using catalyst and this decrease oil yield is attributed to catalytic cracking of bio-oil vapor on the catalyst. The route for deoxygenation of pyrolysis vapors was identified to be dehydration, decarboxylation and decarboxylation. ITQ-2 showed high degree of deoxygenation as compare to MCM-22 which is due to more accessible external active sites of ITQ-2. The organics yield in pyrolysis oil was highest with ZSM-5 in comparison with other zeolites.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2015 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2015
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://dx.doi.org/10.1016/j.eg...
    Article . Peer-reviewed
    Data sources: CORE
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2015 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2015
      License: CC BY NC ND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      http://dx.doi.org/10.1016/j.eg...
      Article . Peer-reviewed
      Data sources: CORE
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abdul Waheed; Salman Naqvi; Imtiaz Ali;

    The co-torrefaction of several biomasses may be a viable solution in the study area, as it produces biofuels and addresses waste-treatment concerns. This review evaluates biomass through ultimate, proximate, and FTIR analyses, and the mechanism of the co-torrefaction process is observed for product quality with a synergistic effect. Furthermore, the parameters of co-torrefaction, including temperature, reaction time, mass yield, energy yield, and the composition of the H/C and O/C ratio of the co-torrefied materials, are similar to those for coal composition. Different reactor types, such as fixed-bed, fluidized-bed, microwave, and batch reactors, are used for co-torrefaction, in which biomass blends with optimized blend ratios. The co-torrefaction process increases the bio-solid yield and heating value, the capacity to adsorb carbon dioxide, and the renewable fuel used for gasification. One of the objectives of this study is to adopt a process that must be viable, green, and sustainable without generating pollution. For this reason, microwave co-torrefaction (MCT) has been used in many recent studies to transform waste and biomass materials into an alternative fuel using a microwave reactor.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Unza Jamil; Asif Husain Khoja; Rabia Liaquat; Salman Raza Naqvi; +2 Authors

    Abstract Due to the diminution of conventional fuels, biodiesel has attracted acute attention due to its renewable and zero-emission features. However, cleaner production of biodiesel on an industrial scale requires a stable heterogeneous, low cost and recyclable catalyst. This study presents the preparation and application of copper and calcium-based metal organic frameworks (MOFs) as catalysts in the esterification and transesterification reactions for biodiesel production from waste cooking oil (WCO). The synthesized catalysts are characterized using XRD, SEM, TGA, FTIR and BET. The catalyst characterization indicates the formations of the cubical structure of MOFs with a crystallite size of

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Muhammad Naveed; Jawad Gul; Muhammad Nouman Aslam Khan; Salman Raza Naqvi; +2 Authors

    La biomasse torréfiée est une source d'énergie verte vitale avec des applications dans les économies circulaires, répondant aux résidus agricoles et à la demande croissante en énergie. Dans cette étude, des modèles ML ont été utilisés pour prédire la durabilité (%) et la perte de masse (%). Tout d'abord, les données ont été collectées et prétraitées, et leur distribution et corrélation ont été analysées. La régression du processus gaussien (GPR) et l'ensemble des arbres d'apprentissage (ELT) ont ensuite été formés et testés sur 80 % et 20 % des données, respectivement. Les deux modèles d'apprentissage automatique ont été optimisés grâce à l'algorithme génétique (GA) et à l'optimisation de l'essaim de particules (PSO) pour la sélection des caractéristiques et le réglage des hyperparamètres. GPR-PSO démontre une excellente précision dans la prédiction de la durabilité (%), atteignant un score R2 d'entraînement de 0,9469 et une valeur RMSE de 0,0785. GPR-GA présente des performances exceptionnelles dans la prédiction de la perte de masse (%), atteignant une valeur R2 d'entraînement de 1 et une valeur RMSE de 9,7373e-05. La température et la durée pendant la torréfaction sont des variables cruciales qui sont conformes aux conclusions tirées des études précédentes. Les modèles GPR et ELT prédisent et optimisent efficacement la qualité de la biomasse torréfiée, ce qui améliore la densité d'énergie, les propriétés mécaniques, la broyabilité et la stabilité au stockage. En outre, ils contribuent à l'agriculture durable en réduisant les émissions de carbone, en améliorant le rapport coût-efficacité et en aidant à la conception et au développement de granuleuses. Cette optimisation augmente non seulement la densité énergétique et la broyabilité, mais améliore également l'efficacité de la distribution des nutriments, la rétention d'eau et réduit l'empreinte carbone. Par conséquent, ces résultats soutiennent la biodiversité et favorisent des pratiques agricoles, écosystémiques et environnementales durables. La biomasa torrefactada es una fuente de energía verde vital con aplicaciones en economías circulares, que aborda los residuos agrícolas y las crecientes demandas de energía. En este estudio, se utilizaron modelos de ML para predecir la durabilidad (%) y la pérdida de masa (%). En primer lugar, se recogieron y preprocesaron los datos, y se analizó su distribución y correlación. La regresión de procesos gaussianos (GPR) y los árboles de aprendizaje en conjunto (ELT) se capacitaron y evaluaron en el 80% y el 20% de los datos, respectivamente. Ambos modelos de aprendizaje automático se sometieron a optimización a través del algoritmo genético (GA) y la optimización de enjambre de partículas (PSO) para la selección de características y el ajuste de hiperparámetros. GPR-PSO demuestra una excelente precisión en la predicción de la durabilidad (%), logrando una puntuación R2 de entrenamiento de 0.9469 y un valor RMSE de 0.0785. GPR-GA exhibe un rendimiento excepcional en la predicción de la pérdida de masa (%), logrando un valor R2 de entrenamiento de 1 y un valor RMSE de 9.7373e-05. La temperatura y la duración durante la torrefacción son variables cruciales que están en línea con las conclusiones extraídas de estudios previos. Los modelos GPR y ELT predicen y optimizan de manera efectiva la calidad de la biomasa torrefactada, lo que lleva a una mayor densidad de energía, propiedades mecánicas, capacidad de molienda y estabilidad de almacenamiento. Además, contribuyen a la agricultura sostenible al reducir las emisiones de carbono, mejorar la rentabilidad y ayudar en el diseño y desarrollo de peletizadores. Esta optimización no solo aumenta la densidad de energía y la capacidad de molienda, sino que también mejora la eficiencia del suministro de nutrientes, la retención de agua y reduce la huella de carbono. En consecuencia, estos resultados apoyan la biodiversidad y promueven prácticas agrícolas, ecosistémicas y ambientales sostenibles. Torrefied biomass is a vital green energy source with applications in circular economies, addressing agricultural residue and rising energy demands. In this study, ML models were used to predict durability (%) and mass loss (%). Firstly, data was collected and preprocessed, and its distribution and correlation were analyzed. Gaussian Process Regression (GPR) and Ensemble Learning Trees (ELT) were then trained and tested on 80% and 20% of the data, respectively. Both machine learning models underwent optimization through Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for feature selection and hyperparameter tuning. GPR-PSO demonstrates excellent accuracy in predicting durability (%), achieving a training R2 score of 0.9469 and an RMSE value of 0.0785. GPR-GA exhibits exceptional performance in predicting mass loss (%), achieving a training R2 value of 1 and an RMSE value of 9.7373e-05. The temperature and duration during torrefaction are crucial variables that are in line with the conclusions drawn from previous studies. GPR and ELT models effectively predict and optimize torrefied biomass quality, leading to enhanced energy density, mechanical properties, grindability, and storage stability. Additionally, they contribute to sustainable agriculture by reducing carbon emissions, improving cost-effectiveness, and aiding in the design and development of pelletizers. This optimization not only increases energy density and grindability but also enhances nutrient delivery efficiency, water retention, and reduces the carbon footprint. Consequently, these outcomes support biodiversity and promote sustainable agricultural, ecosystem, and environmental practices. تعد الكتلة الحيوية Torrefied مصدرًا حيويًا للطاقة الخضراء مع تطبيقات في الاقتصادات الدائرية، ومعالجة المخلفات الزراعية وارتفاع الطلب على الطاقة. في هذه الدراسة، تم استخدام نماذج التعلم الآلي للتنبؤ بالمتانة (٪) وفقدان الكتلة (٪). أولاً، تم جمع البيانات ومعالجتها مسبقًا، وتم تحليل توزيعها وارتباطها. ثم تم تدريب انحدار العملية الغاوسية (GPR) وأشجار التعلم الجماعي (ELT) واختبارها على 80 ٪ و 20 ٪ من البيانات، على التوالي. خضع كلا نموذجي التعلم الآلي للتحسين من خلال الخوارزمية الوراثية (GA) وتحسين سرب الجسيمات (PSO) لاختيار الميزات وضبط المعلمات الفائقة. يُظهر GPR - PSO دقة ممتازة في التنبؤ بالمتانة (٪)، وتحقيق درجة تدريب R2 تبلغ 0.9469 وقيمة RMSE تبلغ 0.0785. يُظهر GPR - GA أداءً استثنائيًا في التنبؤ بفقدان الكتلة (٪)، وتحقيق قيمة R2 للتدريب بقيمة 1 وقيمة RMSE بقيمة 9.7373e-05. تعد درجة الحرارة والمدة أثناء التآكل من المتغيرات الحاسمة التي تتماشى مع الاستنتاجات المستخلصة من الدراسات السابقة. تتنبأ نماذج GPR و ELT بفعالية بجودة الكتلة الحيوية المحسنة وتحسنها، مما يؤدي إلى تعزيز كثافة الطاقة والخصائص الميكانيكية وقابلية الطحن واستقرار التخزين. بالإضافة إلى ذلك، فإنها تساهم في الزراعة المستدامة من خلال الحد من انبعاثات الكربون، وتحسين الفعالية من حيث التكلفة، والمساعدة في تصميم وتطوير الكريات. لا يؤدي هذا التحسين إلى زيادة كثافة الطاقة وقابلية الطحن فحسب، بل يعزز أيضًا كفاءة توصيل المغذيات واحتباس الماء ويقلل من البصمة الكربونية. وبالتالي، تدعم هذه النتائج التنوع البيولوجي وتعزز الممارسات الزراعية والنظم الإيكولوجية والبيئية المستدامة.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Engineering...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemical Engineering Journal Advances
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/jy...
    Other literature type . 2024
    Data sources: Datacite
    https://dx.doi.org/10.60692/fw...
    Other literature type . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Engineering...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemical Engineering Journal Advances
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/jy...
      Other literature type . 2024
      Data sources: Datacite
      https://dx.doi.org/10.60692/fw...
      Other literature type . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abdul Ahad Khan; Jawad Gul; Salman Raza Naqvi; Imtiaz Ali; +5 Authors

    Textile industry utilize a massive amount of dyes for coloring. The dye-containing effluent is released into wastewater along with heavy metals that are part of dye structure. The treatment of textile industry wastewater using conventional techniques (coagulation, membrane technique, electrolysis ion exchange, etc.) is uneconomical and less efficient (for a low concentration of pollutants). Moreover, most of these techniques produce toxic sludge, making them less environmentally friendly. Algae base industry is growing for food, cosmetics and energy needs. Algae biomass in unique compared to lignocellulosic biomass due to presence of various functional group on its surface and presence of various cations. These two characteristics are unique for biochar as a tool for environmental decontamination. Algae biomass contain functional groups and cations that can be effective for removal of organic contaminants (dyes) and heavy metals. Algae can be micro and macro and both have entirely different biomass composition which will lead to a synthesis of different biochar even under same synthesis process. This study reviews the recent progress in the development of an economically viable and eco-friendly approach for textile industry wastewater using algae biomass-derived absorbents. The strategy employed microalgal biochar to remove organic pollutants (dyes) and heavy metals from textile effluents by biosorption. This article discusses different methods for preparing algal biochar (pyrolysis, hydrothermal carbonization and torrefaction), and the adsorption capacity of biochar for dyes and heavy metals. Work on hydrothermal carbonization and torrefaction of microalgal biomass for biochar is limited. Variation in structural and functional groups changes on biochar compared to original microalgal biomass are profound in contract with lignocellulosic biomass. Existing Challenges, future goals, and the development of these technologies at the pilot level are also discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bilal Kazmi; Tooba Sadiq; Syed Ali Ammar Taqvi; Syed Norazizul Syed Nasir; +3 Authors

    Pour faire face au changement climatique, à la sécurité énergétique et à la gestion des déchets, de nouvelles sources d'énergie durables doivent être développées. Cette étude utilise le logiciel Aspen Plus pour extraire le bio-H2 des déchets alimentaires dans le but d'améliorer l'efficacité et la durabilité environnementale. La digestion anaérobie, optimisée pour fonctionner à 20–25 °C et maintenir l'ammoniac à 3%, a considérablement stimulé la production de biogaz. Le solvant [Emim][FAP], à base d'imidazolium, avait d'excellentes performances dans la purification du biogaz. Il a atteint un niveau élevé de pureté du méthane tout en consommant une quantité minimale d'énergie, avec un débit de solvant de 13,415 m³ /h. De plus, l'utilisation de températures plus élevées (600–700 °C) pendant la phase de génération de bio-H2 a considérablement amélioré la quantité et la qualité de l'hydrogène produit. Des évaluations paramétriques et de sensibilité ont été méthodiquement réalisées à chaque étape. Cette méthode intégrée était pratique et respectueuse de l'environnement, selon l'évaluation économique. La génération de H2 à l'aide du reformage à la vapeur donne un TCC de 1,92 × 106 USD. L'étape de séparation du CO2 a des coûts plus élevés (TCC de 2,15 ×107 USD) en raison du lavage liquide ionique et de la liquéfaction du CO2. La consommation d'électricité des compresseurs a un impact significatif sur le coût total d'exploitation (COT), totalisant 4,73 × 108 USD, ce qui montre sa capacité à réduire les émissions de gaz à effet de serre, à optimiser l'utilisation des ressources et à promouvoir la durabilité énergétique. Cette étude présente une solution énergétique durable qui répond aux défis du climat et des déchets. Para abordar el cambio climático, la seguridad energética y la gestión de residuos, se deben desarrollar nuevas fuentes de energía sostenibles. Este estudio utiliza el software Aspen Plus para extraer bio-H2 de los residuos de alimentos con el objetivo de la eficiencia y la sostenibilidad ambiental. La digestión anaeróbica, optimizada para funcionar a 20–25 °C y mantener el amoníaco al 3%, impulsó en gran medida la producción de biogás. El solvente [Emim][FAP], que se basa en imidazolio, tuvo un excelente rendimiento en la purificación del biogás. Alcanzó un alto nivel de pureza de metano mientras consumía una cantidad mínima de energía, con un caudal de disolvente de 13,415 m³ /h. Además, la utilización de temperaturas más altas (600–700 °C) durante la fase de generación de bio-H2 mejoró significativamente tanto la cantidad como la calidad del hidrógeno producido. Las evaluaciones paramétricas y de sensibilidad se realizaron metódicamente en cada etapa. Este método integrado era practicable y respetuoso con el medio ambiente, de acuerdo con la evaluación económica. La generación de H2 mediante reformado con vapor da como resultado un TCC de 1.92 × 106 USD. El paso de separación de CO2 tiene costos más altos (TCC de 2.15 ×107 USD) debido al lavado de líquidos iónicos y la licuefacción de CO2. El consumo de electricidad del compresor tiene un impacto significativo en el costo operativo total (TOC), con un total de 4,73 × 108 USD, lo que demuestra su capacidad para reducir las emisiones de gases de efecto invernadero, optimizar la utilización de los recursos y promover la sostenibilidad energética. Este estudio presenta una solución de energía sostenible que aborda los desafíos climáticos y de residuos. To address climate change, energy security, and waste management, new sustainable energy sources must be developed. This study uses Aspen Plus software to extract bio-H2 from food waste with the goal of efficiency and environmental sustainability. Anaerobic digestion, optimised to operate at 20–25 °C and keep ammonia at 3%, greatly boosted biogas production. The solvent [Emim][FAP], which is based on imidazolium, had excellent performance in purifying biogas. It achieved a high level of methane purity while consuming a minimal amount of energy, with a solvent flow rate of 13.415 m³ /h. Moreover, the utilization of higher temperatures (600–700 °C) during the bio-H2 generation phase significantly enhanced both the amount and quality of hydrogen produced. Parametric and sensitivity assessments were methodically performed at every stage. This integrated method was practicable and environmentally friendly, according to the economic assessment. H2 generation using steam reforming results in a TCC of 1.92 × 106 USD. The CO2 separation step has higher costs (TCC of 2.15 ×107 USD) due to ionic liquid washing and CO2 liquefaction. Compressor electricity consumption significantly impacts total operating cost (TOC), totaling 4.73 × 108 USD. showing its ability to reduce greenhouse gas emissions, optimize resource utilization, and promote energy sustainability. This study presents a sustainable energy solution that addresses climate and waste challenges. لمعالجة تغير المناخ وأمن الطاقة وإدارة النفايات، يجب تطوير مصادر طاقة مستدامة جديدة. تستخدم هذه الدراسة برنامج Aspen Plus لاستخراج H2 الحيوي من نفايات الطعام بهدف الكفاءة والاستدامة البيئية. عزز الهضم اللاهوائي، الأمثل للعمل عند 20–25 درجة مئوية والحفاظ على الأمونيا عند 3 ٪، إنتاج الغاز الحيوي بشكل كبير. كان للمذيب [Emim][FAP]، الذي يعتمد على الإيميدازوليوم، أداء ممتاز في تنقية الغاز الحيوي. حقق مستوى عالٍ من نقاء الميثان مع استهلاك الحد الأدنى من الطاقة، مع معدل تدفق مذيب يبلغ 13.415 مترمكعب /ساعة. علاوة على ذلك، أدى استخدام درجات حرارة أعلى (600–700 درجة مئوية) خلال مرحلة توليد الهيدروجين الحيوي إلى تعزيز كمية ونوعية الهيدروجين المنتج بشكل كبير. تم إجراء تقييمات البارامترية والحساسية بشكل منهجي في كل مرحلة. كانت هذه الطريقة المتكاملة عملية وصديقة للبيئة، وفقًا للتقييم الاقتصادي. ينتج عن توليد H2 باستخدام إصلاح البخار TCC يبلغ 1.92 × 106 دولار أمريكي. تتميز خطوة فصل ثاني أكسيد الكربون بتكاليف أعلى (TCC تبلغ 2.15 ×107 دولار أمريكي) بسبب غسل السائل الأيوني وتسييل ثاني أكسيد الكربون. يؤثر استهلاك كهرباء الضاغط بشكل كبير على إجمالي تكلفة التشغيل (TOC)، والتي يبلغ مجموعها 4.73 × 108 دولار أمريكي. مما يدل على قدرتها على تقليل انبعاثات غازات الدفيئة، وتحسين استخدام الموارد، وتعزيز استدامة الطاقة. تقدم هذه الدراسة حلاً للطاقة المستدامة يتصدى لتحديات المناخ والنفايات.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Process Safety and E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Process Safety and Environmental Protection
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/49...
    Other literature type . 2024
    Data sources: Datacite
    https://dx.doi.org/10.60692/sx...
    Other literature type . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Process Safety and E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Process Safety and Environmental Protection
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/49...
      Other literature type . 2024
      Data sources: Datacite
      https://dx.doi.org/10.60692/sx...
      Other literature type . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Muhammad Arslan; Muhammad Farooq; Muhamamd Naqvi; Umair Sultan; +9 Authors

    Modeling and optimization of a double-inlet pulse tube refrigerator (DIPTR) is very difficult due to its geometry and nature. The objective of this paper was to optimize-DIPTR through experiments with the cold heat exchanger (CHX) along the comparison of cooling load with experimental data using different boundary conditions. To predict its performance, a detailed two-dimensional DIPTR model was developed. A double-drop pulse pipe cooler was used for solving continuity, dynamic and power calculations. External conditions for applicable boundaries include sinusoidal pressure from an end of the tube from a user-defined function and constant temperature or limitations of thermal flux within the outer walls of exchanger walls under colder conditions. The results of the system’s cooling behavior were reported, along with the connection between the mass flow rates, heat distribution along pulse tube and cold-end pressure, the cooler load’s wall temp profile and cooler loads with varied boundary conditions i.e. opening of 20% double-inlet and 40-60% orifice valves, respectively. Different loading conditions of 1 and 5 W were applied on the CHX. At 150 K temperature of the cold-end heat exchanger, a maximum load of 3.7 W was achieved. The results also reveal a strong correlation between computational fluid dynamics modeling results and experimental results of the DIPTR.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Processes
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Processes
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Processes
    Conference object
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Processes
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Processes
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Processes
      Conference object
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Muhammad Assad Munawar; Asif Hussain Khoja; Muhammad Hassan; Rabia Liaquat; +4 Authors

    Abstract The biomass utilization for power generation is one of the efficient pathways to reduce greenhouse gas emissions. However, the high ash formation in biomass fed power plants raises several concerns, especially ash handling and its utilization. In this study, the biomass ash characterization, ash fusion analysis and its utilization as a catalyst in methane (CH4) decomposition were systematically investigated. The biomass bottom ash (BBA) and biomass fly ash (BFA) were modified using laboratory synthesized CeO2 nanoparticles to enhance the fusion temperature. The BBA, BFA and modified CeO2-BBA/BFA samples were characterized by ultimate analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF) analysis to investigate the physicochemical properties and its suitability for the catalysis applications. The detailed characterization inferred that BFA has significant potential in improving the ash fusion temperature as well as suitable for catalysis of fuel processing due to the presence of metal oxides such as Fe2O3, SiO2, CaO, Al2O3 and its porous structure. Furthermore, the most suitable BFA was impregnated with cobalt (Co). Co loaded BFA was employed for CH4 decomposition at 700 °C for H2 production in a fixed bed reactor. The Co/BFA demonstrated a stable catalytic activity of more than 330 min on stream with optimum H2 yield of 30%. The direct employment of BFA as catalyst support shows potential in further catalytic applications and material applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Author ORCID
arrow_drop_down
is
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
63 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salman Raza Naqvi; Suzana Yusup; Mohd Fadhil Nuruddin; Noridah Osman; +1 Authors

    Rice husk is considered as a massive agricultural lignocellulosic biomass residue for the production of bio-based fuels and chemicals products. The purpose of this study is to investigate the physiochemical properties of the pyrolysis-oil derived from wet and dried rice husk fast pyrolysis process. The experiments were performed in a drop type fixed-bed pyrolyzer at the pyrolysis temperature of 350 to 600 °C. The products, char, pyrolysis-oil and gas, yield are investigated. The pyrolysis-oil derived from dried rice husk contained higher Carbon and Hydrogen and less oxygen contents than the pyrolysis-oil obtained from wet rice husk. FT-IR results showed the oxygenated compounds present in both pyrolysis-oil. The pyrolysis oil from dried rice husk has higher concentration of hydrocarbons as compared to wet rice husk pyrolysis-oil. The dried rice husk pyrolysis-oil produced more phenols and less carboxylic acid as compared to wet rice husk pyrolysis-oil at 500 °C. More volatile released in dried rice husk conversion produced more volatile compounds. These findings suggest that the original moisture present in biomass samples is the major influencing parameter on the thermal degradation of biomass during fast pyrolysis process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Mechanics an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Mechanics and Materials
    Article . 2014 . Peer-reviewed
    License: Trans Tech Publications Copyright and Content Usage Policy
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Mechanics an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Mechanics and Materials
      Article . 2014 . Peer-reviewed
      License: Trans Tech Publications Copyright and Content Usage Policy
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Arslan Khan; Imtiaz Ali; Wasif Farooq; Salman Raza Naqvi; +5 Authors

    L'élimination et la gestion des boues d'épuration des tanneries est un enjeu difficile pour les industries du cuir en raison de leurs effets néfastes sur l'environnement. Dans cette étude, la caractérisation et l'évaluation détaillées à l'aide de paramètres cinétiques et thermodynamiques des boues d'épuration de tannerie dans un environnement de combustion ont été utilisées. Des méthodes sans modèle d'isoconversion comme Ozawa-Flynn-Wall (OFW), Friedman et Kissinger-Akahira-Sunose (KAS) ont été utilisées pour étudier la cinétique et les paramètres thermodynamiques dans l'environnement de l'air. Les énergies d'activation (Ea) pour le Friedman, le KAS et l'OFW ont été rapportées. Les courbes DTG à la vitesse de chauffe de 5, 10, 20 et 40 °C/min montrent les conversions diversifiées en trois étapes majeures. Les valeurs Ea pour les gammes de modèles sont Friedman (148,96 kJ/mol-395,23 kJ/mol), KAS (169,65 kJ/mol-383,75 kJ/mol) et OFW (176,44 kJ/mol-377,85 kJ/mol). L'Ea moyen pour le Friedman est de 226,04 kJ/mol tandis que pour KAS et OFW, l'Ea moyen est de 230,71 kJ/mol et 230,11 kJ/mol. De plus, les valeurs de ΔH, ΔG et ΔS ont été analysées. En outre, la distribution de fréquence en appliquant le modèle DAEM est étudiée, et il y a six pseudo-composants impliqués dans la distribution de fréquence pour la combustion. Pour la prédiction de la dégradation thermique des boues d'épuration de la tannerie, un réseau neuronal artificiel (RNA) du modèle MLP-3-7-1 a été utilisé. Ce modèle montre qu'il existe un bon accord entre les valeurs expérimentales et les valeurs prédites. Dans l'ensemble, cette étude souligne l'importance de l'ANN pour la prédiction du comportement de combustion de la biomasse avec plus de précision. La eliminación y la gestión de los lodos de depuración de las curtidurías es un problema difícil para las industrias del cuero debido a sus efectos adversos sobre el medio ambiente. En este estudio se empleó la caracterización y evaluación detallada utilizando parámetros cinéticos y termodinámicos de los lodos de depuradora de curtiduría en ambiente de combustión. Se emplearon métodos sin modelos isoconversionales como Ozawa-Flynn-Wall (OFW), Friedman y Kissinger-Akahira-Sunose (KAS) para investigar la cinética y los parámetros termodinámicos en el ambiente aéreo. Se informaron las energías de activación (Ea) para Friedman, KAS y OFW. Las curvas DTG a la velocidad de calentamiento de 5, 10, 20 y 40 °C/min muestran las conversiones diversificadas en tres etapas principales. Los valores de Ea para los rangos del modelo son Friedman (148.96 kJ/mol-395.23 kJ/mol), KAS (169.65 kJ/mol-383.75 kJ/mol) y OFW (176.44 kJ/mol-377.85 kJ/mol). La Ea media para Friedman es de 226,04 kJ/mol, mientras que para KAS y OFW la Ea media es de 230,71 kJ/mol y 230,11 kJ/mol. Además, se analizaron los valores de ΔH, ΔG y ΔS. Además, se investiga la distribución de frecuencias mediante la aplicación del modelo DAEM, y hay seis pseudocomponentes involucrados en la distribución de frecuencias para la combustión. Para la predicción de la degradación térmica de los lodos de depuradora de la curtiduría se utilizó una red neuronal artificial (ANN) del modelo MLP-3-7-1. Este modelo muestra que existe una buena concordancia entre los valores experimentales y los pronosticados. En general, este estudio destaca la importancia de la ANN para la predicción del comportamiento de combustión de la biomasa con mayor precisión. The disposal and the management of sewage sludge from tanneries is a challenging issue for the leather industries because of their adverse effect on the environment. In this study the detailed characterization and assessment using kinetic and thermodynamic parameters of the tannery sewage sludge in combustion environment was employed. Isoconversional model-free methods like Ozawa-Flynn-Wall (OFW), Friedman and Kissinger-Akahira-Sunose (KAS) were employed to investigate the kinetics and the thermodynamic parameters in the air environment. Activation energies (Ea) for the Friedman, KAS and OFW were reported. The DTG curves at the heating rate of 5, 10, 20 and 40 °C/min show the diversified conversions in three major stages. The Ea values for the model ranges are Friedman (148.96 kJ/mol-395.23 kJ/mol), KAS (169.65 kJ/mol-383.75 kJ/mol) and OFW (176.44 kJ/mol-377.85 kJ/mol). The average Ea for the Friedman is 226.04 kJ/mol while for KAS and OFW the average Ea is 230.71 kJ/mol and 230.11 kJ/mol. Moreover, the values of ΔH, ΔG, and ΔS were analysed. Furthermore, the frequency distribution by applying the DAEM model is investigated, and there are six pseudo-components involved in the frequency distribution for combustion. For the thermal degradation prediction of the sewage sludge from the tannery, an artificial neural network (ANN) of the MLP-3-7-1 model was used. This model shows that there is good agreement between the experimental and the predicted values. Overall, this study highlights the importance of the ANN for the prediction of combustion behaviour of biomass with more accuracy. يمثل التخلص من حمأة الصرف الصحي وإدارتها من المدابغ مشكلة صعبة بالنسبة للصناعات الجلدية بسبب تأثيرها السلبي على البيئة. في هذه الدراسة، تم استخدام التوصيف والتقييم التفصيليين باستخدام المعلمات الحركية والديناميكية الحرارية لحمأة المجاري المدبغة في بيئة الاحتراق. تم استخدام طرق خالية من النماذج المتساوية مثل Ozawa - Flynn - Wall (OFW) و Friedman و Kissinger - Akahira - Sunose (KAS) للتحقيق في الحركية والمعلمات الديناميكية الحرارية في بيئة الهواء. تم الإبلاغ عن طاقات التنشيط (EA) لـ Friedman و KAS و OFW. تُظهر منحنيات DTG بمعدل تسخين 5 و 10 و 20 و 40 درجة مئوية/دقيقة التحويلات المتنوعة في ثلاث مراحل رئيسية. قيم Ea لنطاقات النموذج هي Friedman (148.96 kJ/mol-395.23 kJ/mol) و KAS (169.65 kJ/mol-383.75 kJ/mol) و OFW (176.44 kJ/mol-377.85 kJ/mol). يبلغ متوسط Ea لـ Friedman 226.04 كيلو جول/مول بينما يبلغ متوسط Ea لـ KAS و OFW 230.71 كيلو جول/مول و 230.11 كيلو جول/مول. علاوة على ذلك، تم تحليل قيم ΔH و ΔG و ΔS. علاوة على ذلك، يتم التحقيق في توزيع التردد من خلال تطبيق نموذج DAEM، وهناك ستة مكونات زائفة تشارك في توزيع التردد للاحتراق. للتنبؤ بالتدهور الحراري لحمأة الصرف الصحي من المدبغة، تم استخدام شبكة عصبية اصطناعية (ANN) من نموذج MLP -3-7-1. يوضح هذا النموذج أن هناك اتفاقًا جيدًا بين القيم التجريبية والمتوقعة. بشكل عام، تسلط هذه الدراسة الضوء على أهمية ANN للتنبؤ بسلوك الاحتراق للكتلة الحيوية بدقة أكبر.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Case Studies in Thermal Engineering
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    SSRN Electronic Journal
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    https://dx.doi.org/10.60692/k9...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.60692/16...
    Other literature type . 2022
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Case Studies in Thermal Engineering
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      SSRN Electronic Journal
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      https://dx.doi.org/10.60692/k9...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.60692/16...
      Other literature type . 2022
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Yoshimitu Uemura; Y Sugiur; Suzana Yusup; Naoki Nishiyama; +3 Authors

    AbstractCatalytic upgrading of paddy husk was performed over 10-MR zeolites (MCM-22, ITQ-2 and ZSM-5) in a drop type fixed-bed reactor. This work investigated the role of structure and acidity of zeolites on pyrolysis-oil yield and degree of deoxygenation. Catalytic pyrolysis experiments were carried out at the catalyst/biomass ratio (0.05 -0.5) at temperature of 450°C. The oil yield decreased by using catalyst and this decrease oil yield is attributed to catalytic cracking of bio-oil vapor on the catalyst. The route for deoxygenation of pyrolysis vapors was identified to be dehydration, decarboxylation and decarboxylation. ITQ-2 showed high degree of deoxygenation as compare to MCM-22 which is due to more accessible external active sites of ITQ-2. The organics yield in pyrolysis oil was highest with ZSM-5 in comparison with other zeolites.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2015 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2015
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://dx.doi.org/10.1016/j.eg...
    Article . Peer-reviewed
    Data sources: CORE
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2015 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2015
      License: CC BY NC ND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      http://dx.doi.org/10.1016/j.eg...
      Article . Peer-reviewed
      Data sources: CORE
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abdul Waheed; Salman Naqvi; Imtiaz Ali;

    The co-torrefaction of several biomasses may be a viable solution in the study area, as it produces biofuels and addresses waste-treatment concerns. This review evaluates biomass through ultimate, proximate, and FTIR analyses, and the mechanism of the co-torrefaction process is observed for product quality with a synergistic effect. Furthermore, the parameters of co-torrefaction, including temperature, reaction time, mass yield, energy yield, and the composition of the H/C and O/C ratio of the co-torrefied materials, are similar to those for coal composition. Different reactor types, such as fixed-bed, fluidized-bed, microwave, and batch reactors, are used for co-torrefaction, in which biomass blends with optimized blend ratios. The co-torrefaction process increases the bio-solid yield and heating value, the capacity to adsorb carbon dioxide, and the renewable fuel used for gasification. One of the objectives of this study is to adopt a process that must be viable, green, and sustainable without generating pollution. For this reason, microwave co-torrefaction (MCT) has been used in many recent studies to transform waste and biomass materials into an alternative fuel using a microwave reactor.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Unza Jamil; Asif Husain Khoja; Rabia Liaquat; Salman Raza Naqvi; +2 Authors

    Abstract Due to the diminution of conventional fuels, biodiesel has attracted acute attention due to its renewable and zero-emission features. However, cleaner production of biodiesel on an industrial scale requires a stable heterogeneous, low cost and recyclable catalyst. This study presents the preparation and application of copper and calcium-based metal organic frameworks (MOFs) as catalysts in the esterification and transesterification reactions for biodiesel production from waste cooking oil (WCO). The synthesized catalysts are characterized using XRD, SEM, TGA, FTIR and BET. The catalyst characterization indicates the formations of the cubical structure of MOFs with a crystallite size of

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Muhammad Naveed; Jawad Gul; Muhammad Nouman Aslam Khan; Salman Raza Naqvi; +2 Authors

    La biomasse torréfiée est une source d'énergie verte vitale avec des applications dans les économies circulaires, répondant aux résidus agricoles et à la demande croissante en énergie. Dans cette étude, des modèles ML ont été utilisés pour prédire la durabilité (%) et la perte de masse (%). Tout d'abord, les données ont été collectées et prétraitées, et leur distribution et corrélation ont été analysées. La régression du processus gaussien (GPR) et l'ensemble des arbres d'apprentissage (ELT) ont ensuite été formés et testés sur 80 % et 20 % des données, respectivement. Les deux modèles d'apprentissage automatique ont été optimisés grâce à l'algorithme génétique (GA) et à l'optimisation de l'essaim de particules (PSO) pour la sélection des caractéristiques et le réglage des hyperparamètres. GPR-PSO démontre une excellente précision dans la prédiction de la durabilité (%), atteignant un score R2 d'entraînement de 0,9469 et une valeur RMSE de 0,0785. GPR-GA présente des performances exceptionnelles dans la prédiction de la perte de masse (%), atteignant une valeur R2 d'entraînement de 1 et une valeur RMSE de 9,7373e-05. La température et la durée pendant la torréfaction sont des variables cruciales qui sont conformes aux conclusions tirées des études précédentes. Les modèles GPR et ELT prédisent et optimisent efficacement la qualité de la biomasse torréfiée, ce qui améliore la densité d'énergie, les propriétés mécaniques, la broyabilité et la stabilité au stockage. En outre, ils contribuent à l'agriculture durable en réduisant les émissions de carbone, en améliorant le rapport coût-efficacité et en aidant à la conception et au développement de granuleuses. Cette optimisation augmente non seulement la densité énergétique et la broyabilité, mais améliore également l'efficacité de la distribution des nutriments, la rétention d'eau et réduit l'empreinte carbone. Par conséquent, ces résultats soutiennent la biodiversité et favorisent des pratiques agricoles, écosystémiques et environnementales durables. La biomasa torrefactada es una fuente de energía verde vital con aplicaciones en economías circulares, que aborda los residuos agrícolas y las crecientes demandas de energía. En este estudio, se utilizaron modelos de ML para predecir la durabilidad (%) y la pérdida de masa (%). En primer lugar, se recogieron y preprocesaron los datos, y se analizó su distribución y correlación. La regresión de procesos gaussianos (GPR) y los árboles de aprendizaje en conjunto (ELT) se capacitaron y evaluaron en el 80% y el 20% de los datos, respectivamente. Ambos modelos de aprendizaje automático se sometieron a optimización a través del algoritmo genético (GA) y la optimización de enjambre de partículas (PSO) para la selección de características y el ajuste de hiperparámetros. GPR-PSO demuestra una excelente precisión en la predicción de la durabilidad (%), logrando una puntuación R2 de entrenamiento de 0.9469 y un valor RMSE de 0.0785. GPR-GA exhibe un rendimiento excepcional en la predicción de la pérdida de masa (%), logrando un valor R2 de entrenamiento de 1 y un valor RMSE de 9.7373e-05. La temperatura y la duración durante la torrefacción son variables cruciales que están en línea con las conclusiones extraídas de estudios previos. Los modelos GPR y ELT predicen y optimizan de manera efectiva la calidad de la biomasa torrefactada, lo que lleva a una mayor densidad de energía, propiedades mecánicas, capacidad de molienda y estabilidad de almacenamiento. Además, contribuyen a la agricultura sostenible al reducir las emisiones de carbono, mejorar la rentabilidad y ayudar en el diseño y desarrollo de peletizadores. Esta optimización no solo aumenta la densidad de energía y la capacidad de molienda, sino que también mejora la eficiencia del suministro de nutrientes, la retención de agua y reduce la huella de carbono. En consecuencia, estos resultados apoyan la biodiversidad y promueven prácticas agrícolas, ecosistémicas y ambientales sostenibles. Torrefied biomass is a vital green energy source with applications in circular economies, addressing agricultural residue and rising energy demands. In this study, ML models were used to predict durability (%) and mass loss (%). Firstly, data was collected and preprocessed, and its distribution and correlation were analyzed. Gaussian Process Regression (GPR) and Ensemble Learning Trees (ELT) were then trained and tested on 80% and 20% of the data, respectively. Both machine learning models underwent optimization through Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for feature selection and hyperparameter tuning. GPR-PSO demonstrates excellent accuracy in predicting durability (%), achieving a training R2 score of 0.9469 and an RMSE value of 0.0785. GPR-GA exhibits exceptional performance in predicting mass loss (%), achieving a training R2 value of 1 and an RMSE value of 9.7373e-05. The temperature and duration during torrefaction are crucial variables that are in line with the conclusions drawn from previous studies. GPR and ELT models effectively predict and optimize torrefied biomass quality, leading to enhanced energy density, mechanical properties, grindability, and storage stability. Additionally, they contribute to sustainable agriculture by reducing carbon emissions, improving cost-effectiveness, and aiding in the design and development of pelletizers. This optimization not only increases energy density and grindability but also enhances nutrient delivery efficiency, water retention, and reduces the carbon footprint. Consequently, these outcomes support biodiversity and promote sustainable agricultural, ecosystem, and environmental practices. تعد الكتلة الحيوية Torrefied مصدرًا حيويًا للطاقة الخضراء مع تطبيقات في الاقتصادات الدائرية، ومعالجة المخلفات الزراعية وارتفاع الطلب على الطاقة. في هذه الدراسة، تم استخدام نماذج التعلم الآلي للتنبؤ بالمتانة (٪) وفقدان الكتلة (٪). أولاً، تم جمع البيانات ومعالجتها مسبقًا، وتم تحليل توزيعها وارتباطها. ثم تم تدريب انحدار العملية الغاوسية (GPR) وأشجار التعلم الجماعي (ELT) واختبارها على 80 ٪ و 20 ٪ من البيانات، على التوالي. خضع كلا نموذجي التعلم الآلي للتحسين من خلال الخوارزمية الوراثية (GA) وتحسين سرب الجسيمات (PSO) لاختيار الميزات وضبط المعلمات الفائقة. يُظهر GPR - PSO دقة ممتازة في التنبؤ بالمتانة (٪)، وتحقيق درجة تدريب R2 تبلغ 0.9469 وقيمة RMSE تبلغ 0.0785. يُظهر GPR - GA أداءً استثنائيًا في التنبؤ بفقدان الكتلة (٪)، وتحقيق قيمة R2 للتدريب بقيمة 1 وقيمة RMSE بقيمة 9.7373e-05. تعد درجة الحرارة والمدة أثناء التآكل من المتغيرات الحاسمة التي تتماشى مع الاستنتاجات المستخلصة من الدراسات السابقة. تتنبأ نماذج GPR و ELT بفعالية بجودة الكتلة الحيوية المحسنة وتحسنها، مما يؤدي إلى تعزيز كثافة الطاقة والخصائص الميكانيكية وقابلية الطحن واستقرار التخزين. بالإضافة إلى ذلك، فإنها تساهم في الزراعة المستدامة من خلال الحد من انبعاثات الكربون، وتحسين الفعالية من حيث التكلفة، والمساعدة في تصميم وتطوير الكريات. لا يؤدي هذا التحسين إلى زيادة كثافة الطاقة وقابلية الطحن فحسب، بل يعزز أيضًا كفاءة توصيل المغذيات واحتباس الماء ويقلل من البصمة الكربونية. وبالتالي، تدعم هذه النتائج التنوع البيولوجي وتعزز الممارسات الزراعية والنظم الإيكولوجية والبيئية المستدامة.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Engineering...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemical Engineering Journal Advances
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/jy...
    Other literature type . 2024
    Data sources: Datacite
    https://dx.doi.org/10.60692/fw...
    Other literature type . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Engineering...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemical Engineering Journal Advances
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/jy...
      Other literature type . 2024
      Data sources: Datacite
      https://dx.doi.org/10.60692/fw...
      Other literature type . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abdul Ahad Khan; Jawad Gul; Salman Raza Naqvi; Imtiaz Ali; +5 Authors

    Textile industry utilize a massive amount of dyes for coloring. The dye-containing effluent is released into wastewater along with heavy metals that are part of dye structure. The treatment of textile industry wastewater using conventional techniques (coagulation, membrane technique, electrolysis ion exchange, etc.) is uneconomical and less efficient (for a low concentration of pollutants). Moreover, most of these techniques produce toxic sludge, making them less environmentally friendly. Algae base industry is growing for food, cosmetics and energy needs. Algae biomass in unique compared to lignocellulosic biomass due to presence of various functional group on its surface and presence of various cations. These two characteristics are unique for biochar as a tool for environmental decontamination. Algae biomass contain functional groups and cations that can be effective for removal of organic contaminants (dyes) and heavy metals. Algae can be micro and macro and both have entirely different biomass composition which will lead to a synthesis of different biochar even under same synthesis process. This study reviews the recent progress in the development of an economically viable and eco-friendly approach for textile industry wastewater using algae biomass-derived absorbents. The strategy employed microalgal biochar to remove organic pollutants (dyes) and heavy metals from textile effluents by biosorption. This article discusses different methods for preparing algal biochar (pyrolysis, hydrothermal carbonization and torrefaction), and the adsorption capacity of biochar for dyes and heavy metals. Work on hydrothermal carbonization and torrefaction of microalgal biomass for biochar is limited. Variation in structural and functional groups changes on biochar compared to original microalgal biomass are profound in contract with lignocellulosic biomass. Existing Challenges, future goals, and the development of these technologies at the pilot level are also discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bilal Kazmi; Tooba Sadiq; Syed Ali Ammar Taqvi; Syed Norazizul Syed Nasir; +3 Authors

    Pour faire face au changement climatique, à la sécurité énergétique et à la gestion des déchets, de nouvelles sources d'énergie durables doivent être développées. Cette étude utilise le logiciel Aspen Plus pour extraire le bio-H2 des déchets alimentaires dans le but d'améliorer l'efficacité et la durabilité environnementale. La digestion anaérobie, optimisée pour fonctionner à 20–25 °C et maintenir l'ammoniac à 3%, a considérablement stimulé la production de biogaz. Le solvant [Emim][FAP], à base d'imidazolium, avait d'excellentes performances dans la purification du biogaz. Il a atteint un niveau élevé de pureté du méthane tout en consommant une quantité minimale d'énergie, avec un débit de solvant de 13,415 m³ /h. De plus, l'utilisation de températures plus élevées (600–700 °C) pendant la phase de génération de bio-H2 a considérablement amélioré la quantité et la qualité de l'hydrogène produit. Des évaluations paramétriques et de sensibilité ont été méthodiquement réalisées à chaque étape. Cette méthode intégrée était pratique et respectueuse de l'environnement, selon l'évaluation économique. La génération de H2 à l'aide du reformage à la vapeur donne un TCC de 1,92 × 106 USD. L'étape de séparation du CO2 a des coûts plus élevés (TCC de 2,15 ×107 USD) en raison du lavage liquide ionique et de la liquéfaction du CO2. La consommation d'électricité des compresseurs a un impact significatif sur le coût total d'exploitation (COT), totalisant 4,73 × 108 USD, ce qui montre sa capacité à réduire les émissions de gaz à effet de serre, à optimiser l'utilisation des ressources et à promouvoir la durabilité énergétique. Cette étude présente une solution énergétique durable qui répond aux défis du climat et des déchets. Para abordar el cambio climático, la seguridad energética y la gestión de residuos, se deben desarrollar nuevas fuentes de energía sostenibles. Este estudio utiliza el software Aspen Plus para extraer bio-H2 de los residuos de alimentos con el objetivo de la eficiencia y la sostenibilidad ambiental. La digestión anaeróbica, optimizada para funcionar a 20–25 °C y mantener el amoníaco al 3%, impulsó en gran medida la producción de biogás. El solvente [Emim][FAP], que se basa en imidazolio, tuvo un excelente rendimiento en la purificación del biogás. Alcanzó un alto nivel de pureza de metano mientras consumía una cantidad mínima de energía, con un caudal de disolvente de 13,415 m³ /h. Además, la utilización de temperaturas más altas (600–700 °C) durante la fase de generación de bio-H2 mejoró significativamente tanto la cantidad como la calidad del hidrógeno producido. Las evaluaciones paramétricas y de sensibilidad se realizaron metódicamente en cada etapa. Este método integrado era practicable y respetuoso con el medio ambiente, de acuerdo con la evaluación económica. La generación de H2 mediante reformado con vapor da como resultado un TCC de 1.92 × 106 USD. El paso de separación de CO2 tiene costos más altos (TCC de 2.15 ×107 USD) debido al lavado de líquidos iónicos y la licuefacción de CO2. El consumo de electricidad del compresor tiene un impacto significativo en el costo operativo total (TOC), con un total de 4,73 × 108 USD, lo que demuestra su capacidad para reducir las emisiones de gases de efecto invernadero, optimizar la utilización de los recursos y promover la sostenibilidad energética. Este estudio presenta una solución de energía sostenible que aborda los desafíos climáticos y de residuos. To address climate change, energy security, and waste management, new sustainable energy sources must be developed. This study uses Aspen Plus software to extract bio-H2 from food waste with the goal of efficiency and environmental sustainability. Anaerobic digestion, optimised to operate at 20–25 °C and keep ammonia at 3%, greatly boosted biogas production. The solvent [Emim][FAP], which is based on imidazolium, had excellent performance in purifying biogas. It achieved a high level of methane purity while consuming a minimal amount of energy, with a solvent flow rate of 13.415 m³ /h. Moreover, the utilization of higher temperatures (600–700 °C) during the bio-H2 generation phase significantly enhanced both the amount and quality of hydrogen produced. Parametric and sensitivity assessments were methodically performed at every stage. This integrated method was practicable and environmentally friendly, according to the economic assessment. H2 generation using steam reforming results in a TCC of 1.92 × 106 USD. The CO2 separation step has higher costs (TCC of 2.15 ×107 USD) due to ionic liquid washing and CO2 liquefaction. Compressor electricity consumption significantly impacts total operating cost (TOC), totaling 4.73 × 108 USD. showing its ability to reduce greenhouse gas emissions, optimize resource utilization, and promote energy sustainability. This study presents a sustainable energy solution that addresses climate and waste challenges. لمعالجة تغير المناخ وأمن الطاقة وإدارة النفايات، يجب تطوير مصادر طاقة مستدامة جديدة. تستخدم هذه الدراسة برنامج Aspen Plus لاستخراج H2 الحيوي من نفايات الطعام بهدف الكفاءة والاستدامة البيئية. عزز الهضم اللاهوائي، الأمثل للعمل عند 20–25 درجة مئوية والحفاظ على الأمونيا عند 3 ٪، إنتاج الغاز الحيوي بشكل كبير. كان للمذيب [Emim][FAP]، الذي يعتمد على الإيميدازوليوم، أداء ممتاز في تنقية الغاز الحيوي. حقق مستوى عالٍ من نقاء الميثان مع استهلاك الحد الأدنى من الطاقة، مع معدل تدفق مذيب يبلغ 13.415 مترمكعب /ساعة. علاوة على ذلك، أدى استخدام درجات حرارة أعلى (600–700 درجة مئوية) خلال مرحلة توليد الهيدروجين الحيوي إلى تعزيز كمية ونوعية الهيدروجين المنتج بشكل كبير. تم إجراء تقييمات البارامترية والحساسية بشكل منهجي في كل مرحلة. كانت هذه الطريقة المتكاملة عملية وصديقة للبيئة، وفقًا للتقييم الاقتصادي. ينتج عن توليد H2 باستخدام إصلاح البخار TCC يبلغ 1.92 × 106 دولار أمريكي. تتميز خطوة فصل ثاني أكسيد الكربون بتكاليف أعلى (TCC تبلغ 2.15 ×107 دولار أمريكي) بسبب غسل السائل الأيوني وتسييل ثاني أكسيد الكربون. يؤثر استهلاك كهرباء الضاغط بشكل كبير على إجمالي تكلفة التشغيل (TOC)، والتي يبلغ مجموعها 4.73 × 108 دولار أمريكي. مما يدل على قدرتها على تقليل انبعاثات غازات الدفيئة، وتحسين استخدام الموارد، وتعزيز استدامة الطاقة. تقدم هذه الدراسة حلاً للطاقة المستدامة يتصدى لتحديات المناخ والنفايات.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Process Safety and E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Process Safety and Environmental Protection
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/49...
    Other literature type . 2024
    Data sources: Datacite
    https://dx.doi.org/10.60692/sx...
    Other literature type . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Process Safety and E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Process Safety and Environmental Protection
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/49...
      Other literature type . 2024
      Data sources: Datacite
      https://dx.doi.org/10.60692/sx...
      Other literature type . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Muhammad Arslan; Muhammad Farooq; Muhamamd Naqvi; Umair Sultan; +9 Authors

    Modeling and optimization of a double-inlet pulse tube refrigerator (DIPTR) is very difficult due to its geometry and nature. The objective of this paper was to optimize-DIPTR through experiments with the cold heat exchanger (CHX) along the comparison of cooling load with experimental data using different boundary conditions. To predict its performance, a detailed two-dimensional DIPTR model was developed. A double-drop pulse pipe cooler was used for solving continuity, dynamic and power calculations. External conditions for applicable boundaries include sinusoidal pressure from an end of the tube from a user-defined function and constant temperature or limitations of thermal flux within the outer walls of exchanger walls under colder conditions. The results of the system’s cooling behavior were reported, along with the connection between the mass flow rates, heat distribution along pulse tube and cold-end pressure, the cooler load’s wall temp profile and cooler loads with varied boundary conditions i.e. opening of 20% double-inlet and 40-60% orifice valves, respectively. Different loading conditions of 1 and 5 W were applied on the CHX. At 150 K temperature of the cold-end heat exchanger, a maximum load of 3.7 W was achieved. The results also reveal a strong correlation between computational fluid dynamics modeling results and experimental results of the DIPTR.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Processes
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Processes
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Processes
    Conference object
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Processes
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Processes
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Processes
      Conference object
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Muhammad Assad Munawar; Asif Hussain Khoja; Muhammad Hassan; Rabia Liaquat; +4 Authors

    Abstract The biomass utilization for power generation is one of the efficient pathways to reduce greenhouse gas emissions. However, the high ash formation in biomass fed power plants raises several concerns, especially ash handling and its utilization. In this study, the biomass ash characterization, ash fusion analysis and its utilization as a catalyst in methane (CH4) decomposition were systematically investigated. The biomass bottom ash (BBA) and biomass fly ash (BFA) were modified using laboratory synthesized CeO2 nanoparticles to enhance the fusion temperature. The BBA, BFA and modified CeO2-BBA/BFA samples were characterized by ultimate analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF) analysis to investigate the physicochemical properties and its suitability for the catalysis applications. The detailed characterization inferred that BFA has significant potential in improving the ash fusion temperature as well as suitable for catalysis of fuel processing due to the presence of metal oxides such as Fe2O3, SiO2, CaO, Al2O3 and its porous structure. Furthermore, the most suitable BFA was impregnated with cobalt (Co). Co loaded BFA was employed for CH4 decomposition at 700 °C for H2 production in a fixed bed reactor. The Co/BFA demonstrated a stable catalytic activity of more than 330 min on stream with optimum H2 yield of 30%. The direct employment of BFA as catalyst support shows potential in further catalytic applications and material applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph