- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 France, GermanyPublisher:American Geophysical Union (AGU) Funded by:EC | EMBRACEEC| EMBRACELarry W. Horowitz; Gregory Faluvegi; Drew Shindell; Sophie Szopa; William J. Collins; William J. Collins; Daniel R. Marsh; David Saint-Martin; Douglas E. Kinnison; Klaus-Dirk Gottschaldt; Slimane Bekki; Shingo Watanabe; Kengo Sudo; Daniel Bergmann; Judith Perlwitz; Judith Perlwitz; Irene Cionni; Julie M. Arblaster; Julie M. Arblaster; Philip Cameron-Smith; Jean-Francois Lamarque; Veronika Eyring; Jan Sedláček; Paul Young; Paul Young; Paul Young;doi: 10.1002/jgrd.50316
AbstractOzone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960–2005) and future (2006–2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long‐term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (~20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to ~10 DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/jgrd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jgrd.50316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/jgrd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jgrd.50316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United States, United Kingdom, Ireland, Australia, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Peter M. Caldwell; Michael Wehner; Peter Thorne; Nathan P. Gillett; Laurent Terray; Benjamin D. Santer; Judith Perlwitz; Jeffrey F. Painter; Susan Solomon; Carl Mears; Karl E. Taylor; Frank J. Wentz; Julie M. Arblaster; Julie M. Arblaster; Philip Cameron-Smith; Peter J. Gleckler; Tom M. L. Wigley; Cheng-Zhi Zou; Peter A. Stott; Charles Doutriaux; John R. Lanzante; Laura Wilcox;We perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability. Using these estimates, we calculate signal-to-noise (S/N) ratios to quantify the strength of the fingerprint in the observations relative to fingerprint strength in natural climate noise. For changes in lower stratospheric temperature between 1979 and 2011, S/N ratios vary from 26 to 36, depending on the choice of observational dataset. In the lower troposphere, the fingerprint strength in observations is smaller, but S/N ratios are still significant at the 1% level or better, and range from three to eight. We find no evidence that these ratios are spuriously inflated by model variability errors. After removing all global mean signals, model fingerprints remain identifiable in 70% of the tests involving tropospheric temperature changes. Despite such agreement in the large-scale features of model and observed geographical patterns of atmospheric temperature change, most models do not replicate the size of the observed changes. On average, the models analyzed underestimate the observed cooling of the lower stratosphere and overestimate the warming of the troposphere. Although the precise causes of such differences are unclear, model biases in lower stratospheric temperature trends are likely to be reduced by more realistic treatment of stratospheric ozone depletion and volcanic aerosol forcing.
CORE arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2013 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversity of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/203472j8Data sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1210514109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2013 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversity of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/203472j8Data sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1210514109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, Germany, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | EUCP, UKRI | Securing Multidisciplinar...EC| EUCP ,UKRI| Securing Multidisciplinary UndeRstanding and Prediction of Hiatus and Surge events (SMURPHS)Gianpaolo Balsamo; Raymond W. Arritt; Matthias Tuma; Katja Matthes; Katja Matthes; Yochanan Kushnir; Scott B. Power; Francisco J. Doblas-Reyes; Bo Wu; Terence J. O’Kane; Arun Kumar; Daniela Matei; Masahide Kimoto; Ed Hawkins; George J. Boer; Akihiko Shimpo; Doug Smith; Rupa Kumar Kolli; Marilyn N. Raphael; Judith Perlwitz; Judith Perlwitz; Adam A. Scaife; Adam A. Scaife; Wolfgang A. Müller; Wolfgang A. Müller;Near-term climate predictions — which operate on annual to decadal timescales — offer benefits for climate adaptation and resilience, and are thus important for society. Although skilful near-term predictions are now possible, particularly when coupled models are initialized from the current climate state (most importantly from the ocean), several scientific challenges remain, including gaps in understanding and modelling the underlying physical mechanisms. This Perspective discusses how these challenges can be overcome, outlining concrete steps towards the provision of operational near-term climate predictions. Progress in this endeavour will bridge the gap between current seasonal forecasts and century-scale climate change projections, allowing a seamless climate service delivery chain to be established.
Nature Climate Chang... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0359-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Climate Chang... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0359-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 France, GermanyPublisher:American Geophysical Union (AGU) Funded by:EC | EMBRACEEC| EMBRACELarry W. Horowitz; Gregory Faluvegi; Drew Shindell; Sophie Szopa; William J. Collins; William J. Collins; Daniel R. Marsh; David Saint-Martin; Douglas E. Kinnison; Klaus-Dirk Gottschaldt; Slimane Bekki; Shingo Watanabe; Kengo Sudo; Daniel Bergmann; Judith Perlwitz; Judith Perlwitz; Irene Cionni; Julie M. Arblaster; Julie M. Arblaster; Philip Cameron-Smith; Jean-Francois Lamarque; Veronika Eyring; Jan Sedláček; Paul Young; Paul Young; Paul Young;doi: 10.1002/jgrd.50316
AbstractOzone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960–2005) and future (2006–2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long‐term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (~20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to ~10 DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/jgrd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jgrd.50316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03048322Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/jgrd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jgrd.50316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United States, United Kingdom, Ireland, Australia, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Peter M. Caldwell; Michael Wehner; Peter Thorne; Nathan P. Gillett; Laurent Terray; Benjamin D. Santer; Judith Perlwitz; Jeffrey F. Painter; Susan Solomon; Carl Mears; Karl E. Taylor; Frank J. Wentz; Julie M. Arblaster; Julie M. Arblaster; Philip Cameron-Smith; Peter J. Gleckler; Tom M. L. Wigley; Cheng-Zhi Zou; Peter A. Stott; Charles Doutriaux; John R. Lanzante; Laura Wilcox;We perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability. Using these estimates, we calculate signal-to-noise (S/N) ratios to quantify the strength of the fingerprint in the observations relative to fingerprint strength in natural climate noise. For changes in lower stratospheric temperature between 1979 and 2011, S/N ratios vary from 26 to 36, depending on the choice of observational dataset. In the lower troposphere, the fingerprint strength in observations is smaller, but S/N ratios are still significant at the 1% level or better, and range from three to eight. We find no evidence that these ratios are spuriously inflated by model variability errors. After removing all global mean signals, model fingerprints remain identifiable in 70% of the tests involving tropospheric temperature changes. Despite such agreement in the large-scale features of model and observed geographical patterns of atmospheric temperature change, most models do not replicate the size of the observed changes. On average, the models analyzed underestimate the observed cooling of the lower stratosphere and overestimate the warming of the troposphere. Although the precise causes of such differences are unclear, model biases in lower stratospheric temperature trends are likely to be reduced by more realistic treatment of stratospheric ozone depletion and volcanic aerosol forcing.
CORE arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2013 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversity of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/203472j8Data sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1210514109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2013 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversity of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/203472j8Data sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1210514109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, Germany, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | EUCP, UKRI | Securing Multidisciplinar...EC| EUCP ,UKRI| Securing Multidisciplinary UndeRstanding and Prediction of Hiatus and Surge events (SMURPHS)Gianpaolo Balsamo; Raymond W. Arritt; Matthias Tuma; Katja Matthes; Katja Matthes; Yochanan Kushnir; Scott B. Power; Francisco J. Doblas-Reyes; Bo Wu; Terence J. O’Kane; Arun Kumar; Daniela Matei; Masahide Kimoto; Ed Hawkins; George J. Boer; Akihiko Shimpo; Doug Smith; Rupa Kumar Kolli; Marilyn N. Raphael; Judith Perlwitz; Judith Perlwitz; Adam A. Scaife; Adam A. Scaife; Wolfgang A. Müller; Wolfgang A. Müller;Near-term climate predictions — which operate on annual to decadal timescales — offer benefits for climate adaptation and resilience, and are thus important for society. Although skilful near-term predictions are now possible, particularly when coupled models are initialized from the current climate state (most importantly from the ocean), several scientific challenges remain, including gaps in understanding and modelling the underlying physical mechanisms. This Perspective discusses how these challenges can be overcome, outlining concrete steps towards the provision of operational near-term climate predictions. Progress in this endeavour will bridge the gap between current seasonal forecasts and century-scale climate change projections, allowing a seamless climate service delivery chain to be established.
Nature Climate Chang... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0359-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Climate Chang... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0359-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu