- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Sethu Sundar Pethaiah; Arunkumar Jayakumar; Kalyani Palanichamy;doi: 10.3390/en16237713
The membrane electrode assembly (MEA) encompassing the polymer electrolyte membrane (PEM) and catalyst layers are the key components in Polymer Electrolyte Membrane Fuel Cells (PEMFCs). The cost of the PEMFC stacks has been limiting its commercialization due to the inflated price of conventional platinum (Pt)-based catalysts. As a consequence, the authors of this paper focus on developing novel bi-metallic (Pt-Co) nano-alloy-catalyzed MEAs using the non-equilibrium impregnation–reduction (NEIR) approach with an aim to reduce the Pt content, and hence, the cost. Herein, the MEAs are fabricated on a Nafion® membrane with a 0.4 mgPtcm−2 Pt:Co electrocatalyst loading at three atomic ratios, viz., 90:10, 70:30, and 50:50. The High Resolution-Scanning Electron Microscopic (HR-SEM) characterization of the MEAs show a favorable surface morphology with a uniform distribution of Pt-Co alloy particles with an average size of about 15–25 µm. Under standard fuel cell test conditions, an MEA with a 50:50 atomic ratio of Pt:Co exhibited a peak power density of 0.879 Wcm−2 for H2/O2 and 0.727 Wcm−2 for H2/air systems. The X-ray diffractometry (XRD), SEM, EDX, Cyclic Voltammetry (CV), impedance, and polarization studies validate that Pt:Co can be a potential affordable alternative to high-cost Pt. Additionally, a high degree of stability in the fuel cell performance was also demonstrated with Pt50:Co50.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Md. Alamgir Hossain; Md. Alamgir Hossain; Biplob Ray; Nallapaneni Manoj Kumar; Ashish Kumar Karmaker; Vishnupriyan Jagadeesan; Arunkumar Jayakumar;doi: 10.3390/su12072579
handle: 10072/407862
The growing popularity of electric vehicles (EV) is creating an increasing burden on the power grid in Bangladesh due to massive energy consumption. Due to this uptake of variable energy consumption, environmental concerns, and scarcity of energy lead to investigate alternative energy resources that are readily available and environment friendly. Bangladesh has enormous potential in the field of renewable resources, such as biogas and biomass. Therefore, this paper proposes a design of a 20 kW electric vehicle charging station (EVCS) using biogas resources. A comprehensive viability analysis is also presented for the proposed EVCS from technological, economic, and environmental viewpoints using the HOMER (Hybrid Optimization of Multiple Energy Resources) model. The viability result shows that with the capacity of 15–20 EVs per day, the proposed EVCS will save monthly $16.31 and $29.46, respectively, for easy bike and auto-rickshaw type electric vehicles in Bangladesh compare to grid electricity charging. Furthermore, the proposed charging station can reduce 65.61% of CO2 emissions than a grid-based charging station.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/7/2579/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2020License: CC BYFull-Text: https://www.mdpi.com/Data sources: Bielefeld Academic Search Engine (BASE)aCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1330930Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/7/2579/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2020License: CC BYFull-Text: https://www.mdpi.com/Data sources: Bielefeld Academic Search Engine (BASE)aCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1330930Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Springer Science and Business Media LLC Authors: Arunkumar Jayakumar;Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: S. Vengatesan; Arunkumar Jayakumar; Kishor Kumar Sadasivuni;handle: 10576/63035
Battery electric vehicles (BEVs) are surging worldwide due to technology improvements in lithium-based batteries and rising petroleum prices. India’s EV30@30 campaign aggressively penetrate the Electric vehicle and target share by 30% in 2030. Sarcastically, from the Indian context, the availability of Li-source is limited and subsequently, there has been an impetus to find out a promising electric vehicle (EV). Fuel cell-based EVs are one such potential option. The present review critically assesses the scope and perspective of battery electric vehicles (BEVs)with fuel cell electric vehicles (FCEVs) in line with the Indian context. The assessment validates that fuel cell-based EVs can be a likely option for the Indian sub-continent. As a whole, FCEV technology will advance, and over time, smaller and mid-segment commercial vehicles will eventually be more affordable in addition to being sustainable, especially when using green hydrogen as a fuel. The total cost of ownership (TOC) of FCEV is better than BEV for the period of twelve years and also supports the future of FCEV in the Indian context (Sontakke et al. 2024).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Authors: Sethu Sundar Pethaiah; Kishor Kumar Sadasivuni; Arunkumar Jayakumar; Deepalekshmi Ponnamma; +2 AuthorsSethu Sundar Pethaiah; Kishor Kumar Sadasivuni; Arunkumar Jayakumar; Deepalekshmi Ponnamma; Chandra Sekhar Tiwary; Gangadharan Sasikumar;doi: 10.3390/en13225879
handle: 10576/28621
Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus, hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels, and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells, which are bipolar plates, current collector, and membrane electrode assembly. The efficiency also changes with the nature and type of the fuel, fuel/oxygen ratio, pressure, temperature, humidity, cell potential, and interfacial electronic level interaction between the redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating conditions such as concentration of methanol, cell temperature, catalyst loading, membrane thickness, and cell voltage that affect the performance are critically addressed. Comparison of various methanol electrolyzer systems are performed to validate the significance of methanol economy to match the future sustainable energy demands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Tomiwa Sunday Adebayo; Abraham Ayobamiji Awosusi; Seun Damola Oladipupo; Ephraim Bonah Agyekum; +2 AuthorsTomiwa Sunday Adebayo; Abraham Ayobamiji Awosusi; Seun Damola Oladipupo; Ephraim Bonah Agyekum; Arunkumar Jayakumar; Nallapaneni Manoj Kumar;Despite the drive for increased environmental protection and the achievement of the Sustainable Development Goals (SDGs), coal, oil, and natural gas use continues to dominate Japan’s energy mix. In light of this issue, this research assessed the position of natural gas, oil, and coal energy use in Japan’s environmental mitigation efforts from the perspective of sustainable development with respect to economic growth between 1965 and 2019. In this regard, the study employs Bayer and Hanck cointegration, fully modified Ordinary Least Square (FMOLS), and dynamic ordinary least square (DOLS) to investigate these interconnections. The empirical findings from this study revealed that the utilization of natural gas, oil, and coal energy reduces the sustainability of the environment with oil consumption having the most significant impact. Furthermore, the study validates the environmental Kuznets curve (EKC) hypothesis in Japan. The outcomes of the Gradual shift causality showed that CO2 emissions can predict economic growth, while oil, coal, and energy consumption can predict CO2 emissions in Japan. Given Japan’s ongoing energy crisis, this innovative analysis provides valuable policy insights to stakeholders and authorities in the nation’s energy sector.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1660-4601/18/14/7347/pdfData sources: Multidisciplinary Digital Publishing InstituteInternational Journal of Environmental Research and Public HealthArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1660-4601/18/14/7347/pdfData sources: Multidisciplinary Digital Publishing InstituteInternational Journal of Environmental Research and Public HealthArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Sethu Sundar Pethaiah; Arunkumar Jayakumar; Kalyani Palanichamy;doi: 10.3390/en16237713
The membrane electrode assembly (MEA) encompassing the polymer electrolyte membrane (PEM) and catalyst layers are the key components in Polymer Electrolyte Membrane Fuel Cells (PEMFCs). The cost of the PEMFC stacks has been limiting its commercialization due to the inflated price of conventional platinum (Pt)-based catalysts. As a consequence, the authors of this paper focus on developing novel bi-metallic (Pt-Co) nano-alloy-catalyzed MEAs using the non-equilibrium impregnation–reduction (NEIR) approach with an aim to reduce the Pt content, and hence, the cost. Herein, the MEAs are fabricated on a Nafion® membrane with a 0.4 mgPtcm−2 Pt:Co electrocatalyst loading at three atomic ratios, viz., 90:10, 70:30, and 50:50. The High Resolution-Scanning Electron Microscopic (HR-SEM) characterization of the MEAs show a favorable surface morphology with a uniform distribution of Pt-Co alloy particles with an average size of about 15–25 µm. Under standard fuel cell test conditions, an MEA with a 50:50 atomic ratio of Pt:Co exhibited a peak power density of 0.879 Wcm−2 for H2/O2 and 0.727 Wcm−2 for H2/air systems. The X-ray diffractometry (XRD), SEM, EDX, Cyclic Voltammetry (CV), impedance, and polarization studies validate that Pt:Co can be a potential affordable alternative to high-cost Pt. Additionally, a high degree of stability in the fuel cell performance was also demonstrated with Pt50:Co50.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Md. Alamgir Hossain; Md. Alamgir Hossain; Biplob Ray; Nallapaneni Manoj Kumar; Ashish Kumar Karmaker; Vishnupriyan Jagadeesan; Arunkumar Jayakumar;doi: 10.3390/su12072579
handle: 10072/407862
The growing popularity of electric vehicles (EV) is creating an increasing burden on the power grid in Bangladesh due to massive energy consumption. Due to this uptake of variable energy consumption, environmental concerns, and scarcity of energy lead to investigate alternative energy resources that are readily available and environment friendly. Bangladesh has enormous potential in the field of renewable resources, such as biogas and biomass. Therefore, this paper proposes a design of a 20 kW electric vehicle charging station (EVCS) using biogas resources. A comprehensive viability analysis is also presented for the proposed EVCS from technological, economic, and environmental viewpoints using the HOMER (Hybrid Optimization of Multiple Energy Resources) model. The viability result shows that with the capacity of 15–20 EVs per day, the proposed EVCS will save monthly $16.31 and $29.46, respectively, for easy bike and auto-rickshaw type electric vehicles in Bangladesh compare to grid electricity charging. Furthermore, the proposed charging station can reduce 65.61% of CO2 emissions than a grid-based charging station.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/7/2579/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2020License: CC BYFull-Text: https://www.mdpi.com/Data sources: Bielefeld Academic Search Engine (BASE)aCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1330930Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/7/2579/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2020License: CC BYFull-Text: https://www.mdpi.com/Data sources: Bielefeld Academic Search Engine (BASE)aCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1330930Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Springer Science and Business Media LLC Authors: Arunkumar Jayakumar;Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: S. Vengatesan; Arunkumar Jayakumar; Kishor Kumar Sadasivuni;handle: 10576/63035
Battery electric vehicles (BEVs) are surging worldwide due to technology improvements in lithium-based batteries and rising petroleum prices. India’s EV30@30 campaign aggressively penetrate the Electric vehicle and target share by 30% in 2030. Sarcastically, from the Indian context, the availability of Li-source is limited and subsequently, there has been an impetus to find out a promising electric vehicle (EV). Fuel cell-based EVs are one such potential option. The present review critically assesses the scope and perspective of battery electric vehicles (BEVs)with fuel cell electric vehicles (FCEVs) in line with the Indian context. The assessment validates that fuel cell-based EVs can be a likely option for the Indian sub-continent. As a whole, FCEV technology will advance, and over time, smaller and mid-segment commercial vehicles will eventually be more affordable in addition to being sustainable, especially when using green hydrogen as a fuel. The total cost of ownership (TOC) of FCEV is better than BEV for the period of twelve years and also supports the future of FCEV in the Indian context (Sontakke et al. 2024).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Authors: Sethu Sundar Pethaiah; Kishor Kumar Sadasivuni; Arunkumar Jayakumar; Deepalekshmi Ponnamma; +2 AuthorsSethu Sundar Pethaiah; Kishor Kumar Sadasivuni; Arunkumar Jayakumar; Deepalekshmi Ponnamma; Chandra Sekhar Tiwary; Gangadharan Sasikumar;doi: 10.3390/en13225879
handle: 10576/28621
Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus, hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels, and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells, which are bipolar plates, current collector, and membrane electrode assembly. The efficiency also changes with the nature and type of the fuel, fuel/oxygen ratio, pressure, temperature, humidity, cell potential, and interfacial electronic level interaction between the redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating conditions such as concentration of methanol, cell temperature, catalyst loading, membrane thickness, and cell voltage that affect the performance are critically addressed. Comparison of various methanol electrolyzer systems are performed to validate the significance of methanol economy to match the future sustainable energy demands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Tomiwa Sunday Adebayo; Abraham Ayobamiji Awosusi; Seun Damola Oladipupo; Ephraim Bonah Agyekum; +2 AuthorsTomiwa Sunday Adebayo; Abraham Ayobamiji Awosusi; Seun Damola Oladipupo; Ephraim Bonah Agyekum; Arunkumar Jayakumar; Nallapaneni Manoj Kumar;Despite the drive for increased environmental protection and the achievement of the Sustainable Development Goals (SDGs), coal, oil, and natural gas use continues to dominate Japan’s energy mix. In light of this issue, this research assessed the position of natural gas, oil, and coal energy use in Japan’s environmental mitigation efforts from the perspective of sustainable development with respect to economic growth between 1965 and 2019. In this regard, the study employs Bayer and Hanck cointegration, fully modified Ordinary Least Square (FMOLS), and dynamic ordinary least square (DOLS) to investigate these interconnections. The empirical findings from this study revealed that the utilization of natural gas, oil, and coal energy reduces the sustainability of the environment with oil consumption having the most significant impact. Furthermore, the study validates the environmental Kuznets curve (EKC) hypothesis in Japan. The outcomes of the Gradual shift causality showed that CO2 emissions can predict economic growth, while oil, coal, and energy consumption can predict CO2 emissions in Japan. Given Japan’s ongoing energy crisis, this innovative analysis provides valuable policy insights to stakeholders and authorities in the nation’s energy sector.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1660-4601/18/14/7347/pdfData sources: Multidisciplinary Digital Publishing InstituteInternational Journal of Environmental Research and Public HealthArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1660-4601/18/14/7347/pdfData sources: Multidisciplinary Digital Publishing InstituteInternational Journal of Environmental Research and Public HealthArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
