- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | LIAREC| LIARAuthors: Grzegorz Pasternak; Grzegorz Pasternak; Federico Brunello; Bruno Bosquiroli Santos; +3 AuthorsGrzegorz Pasternak; Grzegorz Pasternak; Federico Brunello; Bruno Bosquiroli Santos; Martin M. Hanczyc; Yuejiao Yang; Antonella Motta;In recent years novel applications of bioelectrochemical systems are exemplified by phototrophic biocathodes, biocompatible enzymatic fuel cells and biodegradable microbial fuel cells (MFCs). Herein, transparent silk fibroin membranes (SFM) with various fibroin content (2%, 4% and 8%) were synthesised and employed as separators in MFCs and compared with standard cation exchange membranes (CEM) as a control. The highest real-time power performance of thin-film SFM was reached by 2%-SFM separators: 25.7 ± 7.4 μW, which corresponds to 68% of the performance of the CEM separators (37.7 ± 3.1 μW). Similarly, 2%-SFM revealed the highest coulombic efficiency of 6.65 ± 1.90%, 74% of the CEM efficiency. Current for 2%-SFM reached 0.25 ± 0.03 mA (86% of CEM control). Decrease of power output was observed after 23 days for 8% and 4% and was a consequence of deterioration of SFMs, determined by physical, chemical and biological studies. This is the first time that economical and transparent silk fibroin polymers were successfully employed in MFCs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 United KingdomPublisher:Public Library of Science (PLoS) Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: John Greenman; Grzegorz Pasternak; Grzegorz Pasternak; Ioannis Ieropoulos;Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United KingdomPublisher:Wiley Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: Grzegorz Pasternak; Grzegorz Pasternak; John Greenman; Ioannis Ieropoulos;AbstractMicrobial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low‐cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m−3, respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m−3, respectively. The results indicate the dependence of bio‐film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X‐ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m−2, respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries.
UWE Research Reposit... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert UWE Research Reposit... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Funded by:UKRI | Waste Made Useful by Micr...UKRI| Waste Made Useful by Microbial Fuel Cells for Energy GenerationGrzegorz Pasternak; Stephen R.P. Jaffé; Phillip C. Wright; Phillip C. Wright; Trong Khoa Pham; Simon T.E. Hall; Pablo Ledezma; Ana G. Pereira-Medrano; Ioannis Ieropoulos; G. J. S. Fowler;pmid: 27599463
Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode‐specific responses of Shewanella oneidensis MR‐1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D‐LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.
PROTEOMICS arrow_drop_down PROTEOMICSArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PROTEOMICS arrow_drop_down PROTEOMICSArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Grzegorz Pasternak; Aleksander de Rosset; Piotr Rutkowski;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United KingdomPublisher:Elsevier BV Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: Pasternak, Grzegorz; Greenman, John; Ieropoulos, Ioannis;Air cathode microbial fuel cells (MFCs) were used in a cascade-system, to treat neat human urine as the fuel. Their long-term operation caused biodeterioration and biofouling of the cathodes. The cathodes were made from two graphite-painted layers, separated by a current collector. The initial performance of the MFCs was reaching average values of 105.5 ± 32.2 μW and current of 1164.5 ± 120.2 μA. After 3 months of operation the power performance decreased to 9.8 ± 3.5 μW, whilst current decreased to 461.2 ± 137.5 μA. Polarisation studies revealed significant transport losses accompanied by a biofilm formation on the cathodes. The alkaline lysis procedure was established to remove the biomass and chemical compounds adsorbed on the cathode's surface. As a result, the current increased from 378.6 ± 108.3 μA to 503.8 ± 95.6 μA. The additional step of replacing the outer layer of the cathode resulted in a further increase of current to 698.1 ± 130 μA. Similarly, the power performance of the MFCs was recovered to the original level reaching 105.3 ± 16.3 μW, which corresponds to 100% recovery. Monitoring bacterial cell number on the cathode's surface showed that biofilm formed during operation was successfully removed and composed mainly of dead bacterial cells after treatment. To the best of the authors' knowledge, this is the first time that the performance of deteriorating cathodes, has been successfully recovered for MFCs in-situ. Through this easy, fast and inexpensive procedure, designing multilayer cathodes may help enhance the range of operating conditions, if a biofilm forms on their surface.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: Grzegorz Pasternak; John Greenman; Ioannis Ieropoulos;AbstractMicrobial electrochemical technology is emerging as an alternative way of treating waste and converting this directly to electricity. Intensive research on these systems is ongoing but it currently lacks the evaluation of possible environmental transmission of enteric viruses originating from the waste stream. In this study, for the first time we investigated this aspect by assessing the removal efficiency of hepatitis B core and surface antigens in cascades of continuous flow microbial fuel cells. The log-reduction (LR) of surface antigen (HBsAg) reached a maximum value of 1.86 ± 0.20 (98.6% reduction), which was similar to the open circuit control and degraded regardless of the recorded current. Core antigen (HBcAg) was much more resistant to treatment and the maximal LR was equal to 0.229 ± 0.028 (41.0% reduction). The highest LR rate observed for HBsAg was 4.66 ± 0.19 h−1 and for HBcAg 0.10 ± 0.01 h−1. Regression analysis revealed correlation between hydraulic retention time, power and redox potential on inactivation efficiency, also indicating electroactive behaviour of biofilm in open circuit control through the snorkel-effect. The results indicate that microbial electrochemical technologies may be successfully applied to reduce the risk of environmental transmission of hepatitis B virus but also open up the possibility of testing other viruses for wider implementation.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, United KingdomPublisher:Oxford University Press (OUP) Oluwatosin Obata; Grzegorz Pasternak; Grzegorz Pasternak; Ioannis Ieropoulos; John Greenman;Abstract Microbial fuel cell (MFC) technology is currently gaining recognition as one of the most promising bioenergy technologies of the future. One aspect of this technology that has received little attention is the disinfection of effluents and the fate of pathogenic organisms that find their way into the waste stream. In this study, three independent trials were carried out to evaluate the fate of three bioluminescent pathogenic bacteria (Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus) introduced into the anodic chamber of a urine-fed cascade of 9 MFCs with matured, electroactive biofilms. These are common examples of enteric human pathogens, which could contaminate urine or waste streams. The results showed that the average power generation in the closed circuit cascade reached 754 ± 16 µW, with an average pathogen log-fold reduction of 6.24 ± 0.63 compared to 2.01 ± 0.26 for the open circuit cascade for all three pathogens. The results suggest that the bio-electrochemical reactions associated with electricity generation were the primary driving force for the inactivation of the introduced pathogens. These findings show that pathogenic organisms introduced into waste streams could be inactivated by the power-generating process within the MFC cascade system, thereby preventing propagation and thus rendering the effluent safer for possible reuse.
e-Prints Soton arrow_drop_down Journal of Industrial Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Industrial Microbiology and BiotechnologyArticle . 2019Data sources: Europe PubMed CentralNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down Journal of Industrial Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Industrial Microbiology and BiotechnologyArticle . 2019Data sources: Europe PubMed CentralNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Aleksander de Rosset; Natalia Tyszkiewicz; Jerzy Wiśniewski; Natalia Pudełko-Malik; +3 AuthorsAleksander de Rosset; Natalia Tyszkiewicz; Jerzy Wiśniewski; Natalia Pudełko-Malik; Piotr Rutkowski; Piotr Młynarz; Grzegorz Pasternak;pmid: 38908152
Microbial fuel cells (MFCs) have been recently proven to synthesise biosurfactants from waste products. In classic bioreactors, the efficiency of biosynthesis process can be controlled by the concentration of nitrogen content in the electrolyte. However, it was not known whether a similar control mechanism could be applied in current-generating conditions. In this work, the effect of nitrogen concentration on biosurfactant production from waste cooking oil was investigated. The concentration of NH4Cl in the electrolyte ranged from 0 to 1 g L-1. The maximum power density equal to 17.5 W m-3 was achieved at a concentration of 0.5 g L-1 (C/N = 2.32) and was accompanied by the highest surface tension decrease (to 54.6 mN m-1) and an emulsification activity index of 95.4%. Characterisation of the biosurfactants produced by the LC-MS/MS method showed the presence of eleven compounds belonging to the mono- and di-rhamnolipids group, most likely produced by P. aeruginosa, which was the most abundant (19.6%) in the community. Importantly, we have found a strong correlation (R = -0.96) of power and biosurfactant activity in response to C/N ratio. This study shows that nitrogen plays an important role in the current-generating metabolism of waste cooking oil. To the best of our knowledge, this is the first study where the nitrogen optimisation was investigated to improve the synthesis of biosurfactants and power generation in a bioelectrochemical system.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Elsevier BV Greenman, John; Gajda, Iwona; You, Jiseon; Mendis, Buddhi Arjuna; Obata, Oluwatosin; Pasternak, Grzegorz; Ieropoulos, Ioannis;Bioelectrochemical systems (BES) represent a wide range of different biofilm-based bioreactors that includes microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The first described bioelectrical bioreactor is the Microbial Fuel Cell and with the exception of MDCs, it is the only type of BES that actually produces harvestable amounts of electricity, rather than requiring an electrical input to function. For these reasons, this review article, with previously unpublished supporting data, focusses primarily on MFCs. Of relevance is the architecture of these bioreactors, the type of membrane they employ (if any) for separating the chambers along with the size, as well as the geometry and material composition of the electrodes which support biofilms. Finally, the structure, properties and growth rate of the microbial biofilms colonising anodic electrodes, are of critical importance for rendering these devices, functional living 'engines' for a wide range of applications.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | LIAREC| LIARAuthors: Grzegorz Pasternak; Grzegorz Pasternak; Federico Brunello; Bruno Bosquiroli Santos; +3 AuthorsGrzegorz Pasternak; Grzegorz Pasternak; Federico Brunello; Bruno Bosquiroli Santos; Martin M. Hanczyc; Yuejiao Yang; Antonella Motta;In recent years novel applications of bioelectrochemical systems are exemplified by phototrophic biocathodes, biocompatible enzymatic fuel cells and biodegradable microbial fuel cells (MFCs). Herein, transparent silk fibroin membranes (SFM) with various fibroin content (2%, 4% and 8%) were synthesised and employed as separators in MFCs and compared with standard cation exchange membranes (CEM) as a control. The highest real-time power performance of thin-film SFM was reached by 2%-SFM separators: 25.7 ± 7.4 μW, which corresponds to 68% of the performance of the CEM separators (37.7 ± 3.1 μW). Similarly, 2%-SFM revealed the highest coulombic efficiency of 6.65 ± 1.90%, 74% of the CEM efficiency. Current for 2%-SFM reached 0.25 ± 0.03 mA (86% of CEM control). Decrease of power output was observed after 23 days for 8% and 4% and was a consequence of deterioration of SFMs, determined by physical, chemical and biological studies. This is the first time that economical and transparent silk fibroin polymers were successfully employed in MFCs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 United KingdomPublisher:Public Library of Science (PLoS) Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: John Greenman; Grzegorz Pasternak; Grzegorz Pasternak; Ioannis Ieropoulos;Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United KingdomPublisher:Wiley Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: Grzegorz Pasternak; Grzegorz Pasternak; John Greenman; Ioannis Ieropoulos;AbstractMicrobial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low‐cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m−3, respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m−3, respectively. The results indicate the dependence of bio‐film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X‐ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m−2, respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries.
UWE Research Reposit... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert UWE Research Reposit... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Funded by:UKRI | Waste Made Useful by Micr...UKRI| Waste Made Useful by Microbial Fuel Cells for Energy GenerationGrzegorz Pasternak; Stephen R.P. Jaffé; Phillip C. Wright; Phillip C. Wright; Trong Khoa Pham; Simon T.E. Hall; Pablo Ledezma; Ana G. Pereira-Medrano; Ioannis Ieropoulos; G. J. S. Fowler;pmid: 27599463
Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode‐specific responses of Shewanella oneidensis MR‐1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D‐LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.
PROTEOMICS arrow_drop_down PROTEOMICSArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PROTEOMICS arrow_drop_down PROTEOMICSArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Grzegorz Pasternak; Aleksander de Rosset; Piotr Rutkowski;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United KingdomPublisher:Elsevier BV Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: Pasternak, Grzegorz; Greenman, John; Ieropoulos, Ioannis;Air cathode microbial fuel cells (MFCs) were used in a cascade-system, to treat neat human urine as the fuel. Their long-term operation caused biodeterioration and biofouling of the cathodes. The cathodes were made from two graphite-painted layers, separated by a current collector. The initial performance of the MFCs was reaching average values of 105.5 ± 32.2 μW and current of 1164.5 ± 120.2 μA. After 3 months of operation the power performance decreased to 9.8 ± 3.5 μW, whilst current decreased to 461.2 ± 137.5 μA. Polarisation studies revealed significant transport losses accompanied by a biofilm formation on the cathodes. The alkaline lysis procedure was established to remove the biomass and chemical compounds adsorbed on the cathode's surface. As a result, the current increased from 378.6 ± 108.3 μA to 503.8 ± 95.6 μA. The additional step of replacing the outer layer of the cathode resulted in a further increase of current to 698.1 ± 130 μA. Similarly, the power performance of the MFCs was recovered to the original level reaching 105.3 ± 16.3 μW, which corresponds to 100% recovery. Monitoring bacterial cell number on the cathode's surface showed that biofilm formed during operation was successfully removed and composed mainly of dead bacterial cells after treatment. To the best of the authors' knowledge, this is the first time that the performance of deteriorating cathodes, has been successfully recovered for MFCs in-situ. Through this easy, fast and inexpensive procedure, designing multilayer cathodes may help enhance the range of operating conditions, if a biofilm forms on their surface.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: Grzegorz Pasternak; John Greenman; Ioannis Ieropoulos;AbstractMicrobial electrochemical technology is emerging as an alternative way of treating waste and converting this directly to electricity. Intensive research on these systems is ongoing but it currently lacks the evaluation of possible environmental transmission of enteric viruses originating from the waste stream. In this study, for the first time we investigated this aspect by assessing the removal efficiency of hepatitis B core and surface antigens in cascades of continuous flow microbial fuel cells. The log-reduction (LR) of surface antigen (HBsAg) reached a maximum value of 1.86 ± 0.20 (98.6% reduction), which was similar to the open circuit control and degraded regardless of the recorded current. Core antigen (HBcAg) was much more resistant to treatment and the maximal LR was equal to 0.229 ± 0.028 (41.0% reduction). The highest LR rate observed for HBsAg was 4.66 ± 0.19 h−1 and for HBcAg 0.10 ± 0.01 h−1. Regression analysis revealed correlation between hydraulic retention time, power and redox potential on inactivation efficiency, also indicating electroactive behaviour of biofilm in open circuit control through the snorkel-effect. The results indicate that microbial electrochemical technologies may be successfully applied to reduce the risk of environmental transmission of hepatitis B virus but also open up the possibility of testing other viruses for wider implementation.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, United KingdomPublisher:Oxford University Press (OUP) Oluwatosin Obata; Grzegorz Pasternak; Grzegorz Pasternak; Ioannis Ieropoulos; John Greenman;Abstract Microbial fuel cell (MFC) technology is currently gaining recognition as one of the most promising bioenergy technologies of the future. One aspect of this technology that has received little attention is the disinfection of effluents and the fate of pathogenic organisms that find their way into the waste stream. In this study, three independent trials were carried out to evaluate the fate of three bioluminescent pathogenic bacteria (Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus) introduced into the anodic chamber of a urine-fed cascade of 9 MFCs with matured, electroactive biofilms. These are common examples of enteric human pathogens, which could contaminate urine or waste streams. The results showed that the average power generation in the closed circuit cascade reached 754 ± 16 µW, with an average pathogen log-fold reduction of 6.24 ± 0.63 compared to 2.01 ± 0.26 for the open circuit cascade for all three pathogens. The results suggest that the bio-electrochemical reactions associated with electricity generation were the primary driving force for the inactivation of the introduced pathogens. These findings show that pathogenic organisms introduced into waste streams could be inactivated by the power-generating process within the MFC cascade system, thereby preventing propagation and thus rendering the effluent safer for possible reuse.
e-Prints Soton arrow_drop_down Journal of Industrial Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Industrial Microbiology and BiotechnologyArticle . 2019Data sources: Europe PubMed CentralNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down Journal of Industrial Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Industrial Microbiology and BiotechnologyArticle . 2019Data sources: Europe PubMed CentralNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Aleksander de Rosset; Natalia Tyszkiewicz; Jerzy Wiśniewski; Natalia Pudełko-Malik; +3 AuthorsAleksander de Rosset; Natalia Tyszkiewicz; Jerzy Wiśniewski; Natalia Pudełko-Malik; Piotr Rutkowski; Piotr Młynarz; Grzegorz Pasternak;pmid: 38908152
Microbial fuel cells (MFCs) have been recently proven to synthesise biosurfactants from waste products. In classic bioreactors, the efficiency of biosynthesis process can be controlled by the concentration of nitrogen content in the electrolyte. However, it was not known whether a similar control mechanism could be applied in current-generating conditions. In this work, the effect of nitrogen concentration on biosurfactant production from waste cooking oil was investigated. The concentration of NH4Cl in the electrolyte ranged from 0 to 1 g L-1. The maximum power density equal to 17.5 W m-3 was achieved at a concentration of 0.5 g L-1 (C/N = 2.32) and was accompanied by the highest surface tension decrease (to 54.6 mN m-1) and an emulsification activity index of 95.4%. Characterisation of the biosurfactants produced by the LC-MS/MS method showed the presence of eleven compounds belonging to the mono- and di-rhamnolipids group, most likely produced by P. aeruginosa, which was the most abundant (19.6%) in the community. Importantly, we have found a strong correlation (R = -0.96) of power and biosurfactant activity in response to C/N ratio. This study shows that nitrogen plays an important role in the current-generating metabolism of waste cooking oil. To the best of our knowledge, this is the first study where the nitrogen optimisation was investigated to improve the synthesis of biosurfactants and power generation in a bioelectrochemical system.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Elsevier BV Greenman, John; Gajda, Iwona; You, Jiseon; Mendis, Buddhi Arjuna; Obata, Oluwatosin; Pasternak, Grzegorz; Ieropoulos, Ioannis;Bioelectrochemical systems (BES) represent a wide range of different biofilm-based bioreactors that includes microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The first described bioelectrical bioreactor is the Microbial Fuel Cell and with the exception of MDCs, it is the only type of BES that actually produces harvestable amounts of electricity, rather than requiring an electrical input to function. For these reasons, this review article, with previously unpublished supporting data, focusses primarily on MFCs. Of relevance is the architecture of these bioreactors, the type of membrane they employ (if any) for separating the chambers along with the size, as well as the geometry and material composition of the electrodes which support biofilms. Finally, the structure, properties and growth rate of the microbial biofilms colonising anodic electrodes, are of critical importance for rendering these devices, functional living 'engines' for a wide range of applications.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
