Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Daniel Clemente; Paulo Rosa Santos; Francisco Taveira Pinto; Paulo Martins;

    Abstract E-Motions wave energy converter is a promising device capable of harnessing energy from wave/wind induced roll oscillations onto a generic floating platform, whose development was initiated with an experimental proof-of-concept study that, despite demonstrating the potentialities of the device, also highlighted the need for further developments, aimed at improving its performance and efficiency. This justified a new phase of numerical modelling, where E-Motions was reproduced within the ANSYS® AQWA™ environment, a potential theory-based numerical model widely used in the field of wave energy converter development. The model was setup (first stage) and calibrated (second stage) with experimental data from a proof-of-concept study, carried out on a 1:40 geometric scale, with a good agreement being obtained for the hydrostatic properties (difference below 5%) and hydrodynamic roll response (minimum average error of 2.83°). From a follow-up third stage, focused on comparing eight different hull solutions with similar natural roll periods, it was determined that the half-sphere and trapezoidal prism geometries produced the highest power outputs for the studied conditions (maximum average outputs of nearly 5 kW/m and 8 kW/m, respectively). These two designs were then adapted to a 1:20 geometric scale alongside an updated version of the half-cylinder, which served as a “control” case, and subjected to a final stage of numerical modelling centered on assessing the Power Take-Off’s influence (namely through variable damping and mass) in their performance. Outcomes from this stage denote the necessity of a careful selection of Power Take-Off mass/damping combinations, as a disproportionate relationship could lead to scenarios where the conversion system would stall on one of the superstructure’s sides, moving within a very limited range of the available sliding amplitude. Maximum average power output values reach nearly 24 kW, 30 kW and 18 kW for the half-cylinder, half-sphere and trapezoidal prism, respectively, with a follow-up experimental study being planned for the near future, in order to evaluate the validity of these results.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tomás Calheiros-Cabral; Daniel Clemente; Paulo Rosa-Santos; Francisco Taveira-Pinto; +3 Authors

    Abstract Ocean waves constitute an abundant source of clean and predictable energy, with the potential to partly replace carbon intensive energy sources. At present, several technologies to convert wave energy into electricity are being developed, but those suitable for integration into port breakwaters present additional advantages. This paper presents a novel concept that combines two well-known wave energy conversion principles, an oscillating water column and a multi-reservoir overtopping system. This hybrid concept was designed to be integrated in rubble-mound breakwaters, having as case study Leixoes’ northern breakwater, Portugal. The performance and efficiency of the single components were assessed separately as well as that of the hybrid module as a whole, to demonstrate the advantages of their combination into a single unit. Furthermore, the annual energy production was estimated for a 20 m wide hybrid module considering the local metocean conditions. Results showed that overall efficiency amounted to circa 44.4%, the wave-to-wire efficiency to 27.3% and the annual electricity production was estimated at 35 MWh/m. Considering that 240 m of the reference breakwater are used, the developed hybrid module could provide approximately 50% of the electricity consumption of the Port of Leixoes, which demonstrates the potential and interest of the developed technology.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: D. Clemente; P. Rosa-Santos; F. Taveira-Pinto; P. Martins; +1 Authors

    Abstract Inspired by observing the motions of vessels at sea, the E-Motions has been proposed as an innovative concept capable of converting wave (and wind) induced roll oscillations on multipurpose offshore floating platforms into electricity. The device can be integrated, theoretically, into any type of offshore floating structure, given its simple 3-component design: floating platform, encasing and sliding Power Take-Off. This latter component can be sheltered from the marine environment by being placed within a casing, at deck level, or the hull of the offshore structure. With so much potential for application at sea, it was important to subject the E-Motions to an initial proof-of-concept, as done for other wave energy converters. This paper presents and discusses the main results and conclusions of an experimental study, carried out with a 1:40 reduced scale physical model, aimed at demonstrating the technical and technological viability of the E-Motions. It was found that, for the considered study variables, the device can operate without major incident and convert electricity from wave induced roll oscillations. Four ballast configurations were considered, of which two yielded higher power outputs. The average measured power reached as high as 11 kW and 13 kW, respectively, with the values reducing for wave period further away from the resonance range and lower wave heights. Power Take-Off damping was found to be an important variable that can considerably influence the energy generation process, yet it will be imperative to further assess this variable in combination with other pertinent variables, such as an external attached mass and different generators. This is key to better understand and describe the complex and non-linear relationship between the motions of the Power Take-Off and the floating platform components.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Daniel Clemente; Paulo Rosa Santos; Francisco Taveira Pinto; Paulo Martins;

    Abstract E-Motions wave energy converter is a promising device capable of harnessing energy from wave/wind induced roll oscillations onto a generic floating platform, whose development was initiated with an experimental proof-of-concept study that, despite demonstrating the potentialities of the device, also highlighted the need for further developments, aimed at improving its performance and efficiency. This justified a new phase of numerical modelling, where E-Motions was reproduced within the ANSYS® AQWA™ environment, a potential theory-based numerical model widely used in the field of wave energy converter development. The model was setup (first stage) and calibrated (second stage) with experimental data from a proof-of-concept study, carried out on a 1:40 geometric scale, with a good agreement being obtained for the hydrostatic properties (difference below 5%) and hydrodynamic roll response (minimum average error of 2.83°). From a follow-up third stage, focused on comparing eight different hull solutions with similar natural roll periods, it was determined that the half-sphere and trapezoidal prism geometries produced the highest power outputs for the studied conditions (maximum average outputs of nearly 5 kW/m and 8 kW/m, respectively). These two designs were then adapted to a 1:20 geometric scale alongside an updated version of the half-cylinder, which served as a “control” case, and subjected to a final stage of numerical modelling centered on assessing the Power Take-Off’s influence (namely through variable damping and mass) in their performance. Outcomes from this stage denote the necessity of a careful selection of Power Take-Off mass/damping combinations, as a disproportionate relationship could lead to scenarios where the conversion system would stall on one of the superstructure’s sides, moving within a very limited range of the available sliding amplitude. Maximum average power output values reach nearly 24 kW, 30 kW and 18 kW for the half-cylinder, half-sphere and trapezoidal prism, respectively, with a follow-up experimental study being planned for the near future, in order to evaluate the validity of these results.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tomás Calheiros-Cabral; Daniel Clemente; Paulo Rosa-Santos; Francisco Taveira-Pinto; +3 Authors

    Abstract Ocean waves constitute an abundant source of clean and predictable energy, with the potential to partly replace carbon intensive energy sources. At present, several technologies to convert wave energy into electricity are being developed, but those suitable for integration into port breakwaters present additional advantages. This paper presents a novel concept that combines two well-known wave energy conversion principles, an oscillating water column and a multi-reservoir overtopping system. This hybrid concept was designed to be integrated in rubble-mound breakwaters, having as case study Leixoes’ northern breakwater, Portugal. The performance and efficiency of the single components were assessed separately as well as that of the hybrid module as a whole, to demonstrate the advantages of their combination into a single unit. Furthermore, the annual energy production was estimated for a 20 m wide hybrid module considering the local metocean conditions. Results showed that overall efficiency amounted to circa 44.4%, the wave-to-wire efficiency to 27.3% and the annual electricity production was estimated at 35 MWh/m. Considering that 240 m of the reference breakwater are used, the developed hybrid module could provide approximately 50% of the electricity consumption of the Port of Leixoes, which demonstrates the potential and interest of the developed technology.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: D. Clemente; P. Rosa-Santos; F. Taveira-Pinto; P. Martins; +1 Authors

    Abstract Inspired by observing the motions of vessels at sea, the E-Motions has been proposed as an innovative concept capable of converting wave (and wind) induced roll oscillations on multipurpose offshore floating platforms into electricity. The device can be integrated, theoretically, into any type of offshore floating structure, given its simple 3-component design: floating platform, encasing and sliding Power Take-Off. This latter component can be sheltered from the marine environment by being placed within a casing, at deck level, or the hull of the offshore structure. With so much potential for application at sea, it was important to subject the E-Motions to an initial proof-of-concept, as done for other wave energy converters. This paper presents and discusses the main results and conclusions of an experimental study, carried out with a 1:40 reduced scale physical model, aimed at demonstrating the technical and technological viability of the E-Motions. It was found that, for the considered study variables, the device can operate without major incident and convert electricity from wave induced roll oscillations. Four ballast configurations were considered, of which two yielded higher power outputs. The average measured power reached as high as 11 kW and 13 kW, respectively, with the values reducing for wave period further away from the resonance range and lower wave heights. Power Take-Off damping was found to be an important variable that can considerably influence the energy generation process, yet it will be imperative to further assess this variable in combination with other pertinent variables, such as an external attached mass and different generators. This is key to better understand and describe the complex and non-linear relationship between the motions of the Power Take-Off and the floating platform components.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph