- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013 BelgiumPublisher:Springer Science and Business Media LLC Helen Verstraelen; Silvia Lenaerts; Geert Potters; Geert Potters; L. F. Lemmens; Kris De Baere; Yves Van Ingelgem; Raf Dewil;Sacrificial anodes have become a standard practice for the protection of ballast tanks of merchant vessels against corrosive damage. A well protected tank should extend the life span of a ship and consequently enhances its economic value. An in situ survey comprising more than 100 merchant vessels provided the opportunity to measure the impact of these anodes on the life expectancy of these vessels. Contrary to the general belief of these anodes’ beneficial effect, no significant difference was found in our observations in terms of corrosion occurrence between ship populations with and without sacrificial anodes, across all ship ages. This may be explained by the highly variable conditions and the complex geometry in a ballast tank severely impede optimal and straightforward installation of these anodes in these tanks. Also, poorly placed anodes in it may harm the integrity of the coating of the tank. We therefore plead for uniform and clear rules on anode installation and inspection.
Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2014Data sources: Vrije Universiteit Brussel Research PortalJournal of Marine Science and TechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Marine Science and TechnologyArticle . 2014Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2014Data sources: Vrije Universiteit Brussel Research PortalJournal of Marine Science and TechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Marine Science and TechnologyArticle . 2014Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Lise Appels; Jan Van Impe; Sofie Houtmeyers; Raf Dewil; Jan Degrève;pmid: 23211486
Anaerobic digestion is widely applied for the recovery of energy from waste activated sludge. Pre-treatment methods are of high interest to increase the biodegradability of the sludge and to enhance the digestion efficiency. This paper studies the application of a microwave pre-treatment. An experimental set-up of two pilot scale semi-continuous digesters was used. During a long term experiment, one of the reactors was fed with untreated sludge, while microwave pre-treated sludge (336 kJ/kg sludge) was introduced in the second one. A solid retention time of 20 days was kept during the experiments. (Organic) dry solids, carbohydrates, proteins and volatile fatty acids were monitored during digestion. It was seen that the microwave pre-treatment resulted in an effective solubilization of the organic matter in the sludge. The changes to the sludge composition resulted in an increase in biogas production by 50%, while the methane concentration in both reactors remained stable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Jan Baeyens; Lise Appels; Raf Dewil;pmid: 17321678
Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Jan Degrève; Lise Appels; Ado Van Assche; Raf Dewil; Kris Willems; Jan Van Impe;pmid: 21227687
Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jia Liu; Shuo Li; Raf Dewil; Maarten Vanierschot; Jan Baeyens; Yimin Deng;doi: 10.3390/su14137597
Thermal water splitting by redox reactants could contribute to a hydrogen-based energy economy. The authors previously assessed and classified these thermo-chemical water splitting redox reactions. The Mn3O4/MnO/NaMnO2 multi-step redox cycles were demonstrated to have high potential. The present research experimentally investigated the MnOx/Na2CO3 redox water splitting system both in an electric furnace and in a concentrated solar furnace at 775 and 825 °C, respectively, using 10 to 250 g of redox reactants. The characteristics of all reactants were determined by particle size distribution, porosity, XRD and SEM. With milled particle and grain sizes below 1 µm, the reactants offer a large surface area for the heterogeneous gas/solid reaction. Up to 10 complete cycles (oxidation/reduction) were assessed in the electric furnace. After 10 cycles, an equilibrium yield appeared to be reached. The milled Mn3O4/Na2CO3 cycle showed an efficiency of 78% at 825 °C. After 10 redox cycles, the efficiency was still close to 60%. At 775 °C, the milled MnO/Na2CO3 cycles showed an 80% conversion during cycle 1, which decreased to 77% after cycle 10. Other reactant compounds achieved a significantly lower conversion yield. In the solar furnace, the highest conversion (>95%) was obtained with the Mn3O4/Na2CO3 system at 775 °C. A final assessment of the process economics revealed that at least 30 to 40 cycles would be needed to produce H2 at the price of 4 €/kg H2. To meet competitive prices below 2 €/kg H2, over 80 cycles should be achieved. The experimental and economic results stress the importance of improving the reverse cycles of the redox system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/13/7597/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/13/7597/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Jan Degrève; Jan Baeyens; Huili Zhang; Raf Dewil;AbstractCirculating Fluidised Beds (CFBs) are widely applied in the process industry, for mostly gas-solid and gas-catalytic reactions. The riser is the key component of the CFB being the process reactor. The important design parameters are the operating gas velocity (U) and the solids concentration flux (G). The CFB operation starts at moderate to high superficial gas velocities. Its voidage exceeds ∼ 0.9 and is a function of the solids circulation flux. Different flow modes have been presented in literature, and result in an operation diagram where G and U delineate specific operations, from dilute riser flow, through core-annulus flow, to dense riser upflow (mostly at any U, G exceeding 80 to 120 kg m-2s-1). Increasing G whilst maintaining the gas velocity will cause an increase in suspension concentration. The riser flow can hence be characterized by its apparent voidage, ɛ. In the core-annulus operation, clusters of particles reflux near the wall, thus influencing the local radial voidage in the cross section of the riser, and also extending over a given distance, δ, from the wall to the core .Through measurements in CFBs of 0.1 and 0.14 m I.D., the research has been able to determine the average axial and radial voidages of the dense phase within the different regimes, whilst also determining the thickness of the annulus (in CAF-mode). Experimental results will be illustrated and compared with previous empirical equations, shown to have a limited accuracy only both for ɛ, and for the thickness of the annulus in CAF operation. Within the operating conditions tested, results demonstrate that the annulus thickness is about 15 to 20% of the riser diameter in CAF, and that the voidage in the riser is a function of U and G, with riser diameter and distance along the riser length as secondary parameters.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Jan Degrève; Bart Van der Bruggen; Lise Appels; Jan Van Impe; Raf Dewil;pmid: 20335023
In this work, the influence of a low temperature (70-90 degrees C) thermal treatment on anaerobic digestion is studied. Not only the increase in biogas production is investigated, but attention is also paid to the solubilisation of the main organic (proteins, carbohydrates and volatile fatty acids) and inorganic (heavy metals, S and P) sludge constituents during thermal treatment and the breakdown of the organic components during the subsequent anaerobic digestion. Taking into account the effects of the treatment on the sludge composition is of prime importance to evaluate its influence on the subsequent anaerobic digestion and biogas production using predictive models. It was seen that organic and inorganic compounds are efficiently solubilised during thermal treatment. In general, a higher temperature and a longer treatment time are beneficial for the release. The efficiency of the subsequent anaerobic digestion slightly decreased for sludge pre-treated at 70 degrees C. At higher pre-treatment temperatures, the biogas production increased significantly, up to a factor 11 for the 60 min treatment at 90 degrees C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:EC | NEXT-CSPEC| NEXT-CSPKang, Qian; Dewil, Raf; Degrève, Jan; Baeyens, Jan; Zhang, Huili;Abstract The key to achieve an economically more attractive concentrated solar power plant is to work at higher operating temperatures, allowing both higher power conversion efficiencies resulting in a smaller heliostat field for a given energy output, and higher temperature ranges in the storage tanks, with increased energy storage density and smaller size, hence less expensive. This fostered the development of using particle suspensions as heat transfer media. This paper presents a theoretical framework for the energy analysis of a particle-in-tube solar power plant, hybridized, with topping air-Brayton cycle turbine, and bottoming steam block. From studying the effects of essential design parameters on the energy efficiency, the heat transfer efficiency of the turbine air preheater is of paramount importance to increase the solar contribution within the hybrid concept, while the energy efficiency moreover increases by an optimum air-Brayton cycle turbine operation (mostly through the pressure ratio, less by the operating temperature). The overall efficiency of the concept varies from about 40% when using combined low and high pressure Brayton cycle turbines only, to over 48% in a fully combined air-steam concept. Energy efficiency findings are in agreement with the literature data.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Wiley Authors: Qian Kang; Lise Appels; Tianwei Tan; Raf Dewil;“Second generation” bioethanol, with lignocellulose material as feedstock, is a promising alternative for first generation bioethanol. This paper provides an overview of the current status and reveals the bottlenecks that hamper its implementation. The current literature specifies a conversion of biomass to bioethanol of 30 to ~50% only. Novel processes increase the conversion yield to about 92% of the theoretical yield. New combined processes reduce both the number of operational steps and the production of inhibitors. Recent advances in genetically engineered microorganisms are promising for higher alcohol tolerance and conversion efficiency. By combining advanced systems and by intensive additional research to eliminate current bottlenecks, second generation bioethanol could surpass the traditional first generation processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Jan Baeyens; Lise Appels; Jan Degrève; Raf Dewil;Abstract When treating municipal wastewater, the disposal of sludge is a problem of growing importance, representing up to 50% of the current operating costs of a wastewater treatment plant. Although different disposal routes are possible, anaerobic digestion plays an important role for its abilities to further transform organic matter into biogas (60–70 vol% of methane, CH 4 ), as thereby it also reduces the amount of final sludge solids for disposal whilst destroying most of the pathogens present in the sludge and limiting odour problems associated with residual putrescible matter. Anaerobic digestion thus optimises WWTP costs, its environmental footprint and is considered a major and essential part of a modern WWTP. The potential of using the biogas as energy source has long been widely recognised and current techniques are being developed to upgrade quality and to enhance energy use. The present paper extensively reviews the principles of anaerobic digestion, the process parameters and their interaction, the design methods, the biogas utilisation, the possible problems and potential pro-active cures, and the recent developments to reduce the impact of the problems. After having reviewed the basic principles and techniques of the anaerobic digestion process, modelling concepts will be assessed to delineate the dominant parameters. Hydrolysis is recognised as rate-limiting step in the complex digestion process. The microbiology of anaerobic digestion is complex and delicate, involving several bacterial groups, each of them having their own optimum working conditions. As will be shown, these groups are sensitive to and possibly inhibited by several process parameters such as pH, alkalinity, concentration of free ammonia, hydrogen, sodium, potassium, heavy metals, volatile fatty acids and others. To accelerate the digestion and enhance the production of biogas, various pre-treatments can be used to improve the rate-limiting hydrolysis. These treatments include mechanical, thermal, chemical and biological interventions to the feedstock. All pre-treatments result in a lysis or disintegration of sludge cells, thus releasing and solubilising intracellular material into the water phase and transforming refractory organic material into biodegradable species. Possible techniques to upgrade the biogas formed by removing CO 2 , H 2 S and excess moisture will be summarised. Special attention will be paid to the problems associated with siloxanes (SX) possibly present in the sludge and biogas, together with the techniques to either reduce their concentration in sludge by preventive actions such as peroxidation, or eliminate the SX from the biogas by adsorption or other techniques. The reader will finally be guided to extensive publications concerning the operation, control, maintenance and troubleshooting of anaerobic digestion plants.
Progress in Energy a... arrow_drop_down Progress in Energy and Combustion ScienceArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Progress in Energy a... arrow_drop_down Progress in Energy and Combustion ScienceArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2013 BelgiumPublisher:Springer Science and Business Media LLC Helen Verstraelen; Silvia Lenaerts; Geert Potters; Geert Potters; L. F. Lemmens; Kris De Baere; Yves Van Ingelgem; Raf Dewil;Sacrificial anodes have become a standard practice for the protection of ballast tanks of merchant vessels against corrosive damage. A well protected tank should extend the life span of a ship and consequently enhances its economic value. An in situ survey comprising more than 100 merchant vessels provided the opportunity to measure the impact of these anodes on the life expectancy of these vessels. Contrary to the general belief of these anodes’ beneficial effect, no significant difference was found in our observations in terms of corrosion occurrence between ship populations with and without sacrificial anodes, across all ship ages. This may be explained by the highly variable conditions and the complex geometry in a ballast tank severely impede optimal and straightforward installation of these anodes in these tanks. Also, poorly placed anodes in it may harm the integrity of the coating of the tank. We therefore plead for uniform and clear rules on anode installation and inspection.
Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2014Data sources: Vrije Universiteit Brussel Research PortalJournal of Marine Science and TechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Marine Science and TechnologyArticle . 2014Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2014Data sources: Vrije Universiteit Brussel Research PortalJournal of Marine Science and TechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Marine Science and TechnologyArticle . 2014Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Lise Appels; Jan Van Impe; Sofie Houtmeyers; Raf Dewil; Jan Degrève;pmid: 23211486
Anaerobic digestion is widely applied for the recovery of energy from waste activated sludge. Pre-treatment methods are of high interest to increase the biodegradability of the sludge and to enhance the digestion efficiency. This paper studies the application of a microwave pre-treatment. An experimental set-up of two pilot scale semi-continuous digesters was used. During a long term experiment, one of the reactors was fed with untreated sludge, while microwave pre-treated sludge (336 kJ/kg sludge) was introduced in the second one. A solid retention time of 20 days was kept during the experiments. (Organic) dry solids, carbohydrates, proteins and volatile fatty acids were monitored during digestion. It was seen that the microwave pre-treatment resulted in an effective solubilization of the organic matter in the sludge. The changes to the sludge composition resulted in an increase in biogas production by 50%, while the methane concentration in both reactors remained stable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Jan Baeyens; Lise Appels; Raf Dewil;pmid: 17321678
Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Jan Degrève; Lise Appels; Ado Van Assche; Raf Dewil; Kris Willems; Jan Van Impe;pmid: 21227687
Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jia Liu; Shuo Li; Raf Dewil; Maarten Vanierschot; Jan Baeyens; Yimin Deng;doi: 10.3390/su14137597
Thermal water splitting by redox reactants could contribute to a hydrogen-based energy economy. The authors previously assessed and classified these thermo-chemical water splitting redox reactions. The Mn3O4/MnO/NaMnO2 multi-step redox cycles were demonstrated to have high potential. The present research experimentally investigated the MnOx/Na2CO3 redox water splitting system both in an electric furnace and in a concentrated solar furnace at 775 and 825 °C, respectively, using 10 to 250 g of redox reactants. The characteristics of all reactants were determined by particle size distribution, porosity, XRD and SEM. With milled particle and grain sizes below 1 µm, the reactants offer a large surface area for the heterogeneous gas/solid reaction. Up to 10 complete cycles (oxidation/reduction) were assessed in the electric furnace. After 10 cycles, an equilibrium yield appeared to be reached. The milled Mn3O4/Na2CO3 cycle showed an efficiency of 78% at 825 °C. After 10 redox cycles, the efficiency was still close to 60%. At 775 °C, the milled MnO/Na2CO3 cycles showed an 80% conversion during cycle 1, which decreased to 77% after cycle 10. Other reactant compounds achieved a significantly lower conversion yield. In the solar furnace, the highest conversion (>95%) was obtained with the Mn3O4/Na2CO3 system at 775 °C. A final assessment of the process economics revealed that at least 30 to 40 cycles would be needed to produce H2 at the price of 4 €/kg H2. To meet competitive prices below 2 €/kg H2, over 80 cycles should be achieved. The experimental and economic results stress the importance of improving the reverse cycles of the redox system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/13/7597/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/13/7597/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Jan Degrève; Jan Baeyens; Huili Zhang; Raf Dewil;AbstractCirculating Fluidised Beds (CFBs) are widely applied in the process industry, for mostly gas-solid and gas-catalytic reactions. The riser is the key component of the CFB being the process reactor. The important design parameters are the operating gas velocity (U) and the solids concentration flux (G). The CFB operation starts at moderate to high superficial gas velocities. Its voidage exceeds ∼ 0.9 and is a function of the solids circulation flux. Different flow modes have been presented in literature, and result in an operation diagram where G and U delineate specific operations, from dilute riser flow, through core-annulus flow, to dense riser upflow (mostly at any U, G exceeding 80 to 120 kg m-2s-1). Increasing G whilst maintaining the gas velocity will cause an increase in suspension concentration. The riser flow can hence be characterized by its apparent voidage, ɛ. In the core-annulus operation, clusters of particles reflux near the wall, thus influencing the local radial voidage in the cross section of the riser, and also extending over a given distance, δ, from the wall to the core .Through measurements in CFBs of 0.1 and 0.14 m I.D., the research has been able to determine the average axial and radial voidages of the dense phase within the different regimes, whilst also determining the thickness of the annulus (in CAF-mode). Experimental results will be illustrated and compared with previous empirical equations, shown to have a limited accuracy only both for ɛ, and for the thickness of the annulus in CAF operation. Within the operating conditions tested, results demonstrate that the annulus thickness is about 15 to 20% of the riser diameter in CAF, and that the voidage in the riser is a function of U and G, with riser diameter and distance along the riser length as secondary parameters.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Jan Degrève; Bart Van der Bruggen; Lise Appels; Jan Van Impe; Raf Dewil;pmid: 20335023
In this work, the influence of a low temperature (70-90 degrees C) thermal treatment on anaerobic digestion is studied. Not only the increase in biogas production is investigated, but attention is also paid to the solubilisation of the main organic (proteins, carbohydrates and volatile fatty acids) and inorganic (heavy metals, S and P) sludge constituents during thermal treatment and the breakdown of the organic components during the subsequent anaerobic digestion. Taking into account the effects of the treatment on the sludge composition is of prime importance to evaluate its influence on the subsequent anaerobic digestion and biogas production using predictive models. It was seen that organic and inorganic compounds are efficiently solubilised during thermal treatment. In general, a higher temperature and a longer treatment time are beneficial for the release. The efficiency of the subsequent anaerobic digestion slightly decreased for sludge pre-treated at 70 degrees C. At higher pre-treatment temperatures, the biogas production increased significantly, up to a factor 11 for the 60 min treatment at 90 degrees C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:EC | NEXT-CSPEC| NEXT-CSPKang, Qian; Dewil, Raf; Degrève, Jan; Baeyens, Jan; Zhang, Huili;Abstract The key to achieve an economically more attractive concentrated solar power plant is to work at higher operating temperatures, allowing both higher power conversion efficiencies resulting in a smaller heliostat field for a given energy output, and higher temperature ranges in the storage tanks, with increased energy storage density and smaller size, hence less expensive. This fostered the development of using particle suspensions as heat transfer media. This paper presents a theoretical framework for the energy analysis of a particle-in-tube solar power plant, hybridized, with topping air-Brayton cycle turbine, and bottoming steam block. From studying the effects of essential design parameters on the energy efficiency, the heat transfer efficiency of the turbine air preheater is of paramount importance to increase the solar contribution within the hybrid concept, while the energy efficiency moreover increases by an optimum air-Brayton cycle turbine operation (mostly through the pressure ratio, less by the operating temperature). The overall efficiency of the concept varies from about 40% when using combined low and high pressure Brayton cycle turbines only, to over 48% in a fully combined air-steam concept. Energy efficiency findings are in agreement with the literature data.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Wiley Authors: Qian Kang; Lise Appels; Tianwei Tan; Raf Dewil;“Second generation” bioethanol, with lignocellulose material as feedstock, is a promising alternative for first generation bioethanol. This paper provides an overview of the current status and reveals the bottlenecks that hamper its implementation. The current literature specifies a conversion of biomass to bioethanol of 30 to ~50% only. Novel processes increase the conversion yield to about 92% of the theoretical yield. New combined processes reduce both the number of operational steps and the production of inhibitors. Recent advances in genetically engineered microorganisms are promising for higher alcohol tolerance and conversion efficiency. By combining advanced systems and by intensive additional research to eliminate current bottlenecks, second generation bioethanol could surpass the traditional first generation processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Jan Baeyens; Lise Appels; Jan Degrève; Raf Dewil;Abstract When treating municipal wastewater, the disposal of sludge is a problem of growing importance, representing up to 50% of the current operating costs of a wastewater treatment plant. Although different disposal routes are possible, anaerobic digestion plays an important role for its abilities to further transform organic matter into biogas (60–70 vol% of methane, CH 4 ), as thereby it also reduces the amount of final sludge solids for disposal whilst destroying most of the pathogens present in the sludge and limiting odour problems associated with residual putrescible matter. Anaerobic digestion thus optimises WWTP costs, its environmental footprint and is considered a major and essential part of a modern WWTP. The potential of using the biogas as energy source has long been widely recognised and current techniques are being developed to upgrade quality and to enhance energy use. The present paper extensively reviews the principles of anaerobic digestion, the process parameters and their interaction, the design methods, the biogas utilisation, the possible problems and potential pro-active cures, and the recent developments to reduce the impact of the problems. After having reviewed the basic principles and techniques of the anaerobic digestion process, modelling concepts will be assessed to delineate the dominant parameters. Hydrolysis is recognised as rate-limiting step in the complex digestion process. The microbiology of anaerobic digestion is complex and delicate, involving several bacterial groups, each of them having their own optimum working conditions. As will be shown, these groups are sensitive to and possibly inhibited by several process parameters such as pH, alkalinity, concentration of free ammonia, hydrogen, sodium, potassium, heavy metals, volatile fatty acids and others. To accelerate the digestion and enhance the production of biogas, various pre-treatments can be used to improve the rate-limiting hydrolysis. These treatments include mechanical, thermal, chemical and biological interventions to the feedstock. All pre-treatments result in a lysis or disintegration of sludge cells, thus releasing and solubilising intracellular material into the water phase and transforming refractory organic material into biodegradable species. Possible techniques to upgrade the biogas formed by removing CO 2 , H 2 S and excess moisture will be summarised. Special attention will be paid to the problems associated with siloxanes (SX) possibly present in the sludge and biogas, together with the techniques to either reduce their concentration in sludge by preventive actions such as peroxidation, or eliminate the SX from the biogas by adsorption or other techniques. The reader will finally be guided to extensive publications concerning the operation, control, maintenance and troubleshooting of anaerobic digestion plants.
Progress in Energy a... arrow_drop_down Progress in Energy and Combustion ScienceArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Progress in Energy a... arrow_drop_down Progress in Energy and Combustion ScienceArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
