- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOCountry
Source
- Energy Research
- 2. Zero hunger
- Energy Research
- 2. Zero hunger
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Håkan Pleijel; Malin C. Broberg; Johan Uddling;pmid: 30769314
Data from experiments where field-grown wheat was exposed to ozone were collated in order to compare the effects in Europe, Asia and North America using dose-response regression. In addition to grain yield, average grain mass and harvest index were included to reflect the influence of ozone on the crop growth pattern. In order to include as many experiments as possible, daytime average ozone concentration was used as the ozone exposure index, but AOT40, estimated from average ozone concentrations, was also used to compare the performance of the two exposure metrics. The response to ozone differed significantly between the continents only for grain yield when using AOT40 as the exposure index. North American wheat was less sensitive than European and Asian that responded similarly. The variation in responses across all three continents was smallest for harvest index, followed by grain mass and grain yield. The highly consistent effect on harvest index shows that not only effects on biomass accumulation, but also on the partitioning of biomass, are important for the ozone-induced grain yield loss in wheat. The average duration of daily ozone exposure was longer in European experiments compared to North American and Asian. It cannot be excluded that this contributed to the indicated higher ozone sensitivity in European wheat in relation to North American. The main conclusions from this study are that on the average the response of wheat to ozone was lower for the older North American experiments and that the ozone response of the growth pattern reflected by grain mass and harvest index did not differ between continents.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.02.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.02.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Gina Mills; Johan Uddling; Madhoolika Agrawal; David Simpson; David Simpson; Lisa Emberson; Kazuhiko Kobayashi; Zhaozhong Feng; Malin Broberg; Michael Frei; Kent O. Burkey; Katrina Sharps; Håkan Pleijel;doi: 10.1111/gcb.14381
pmid: 30084165
AbstractIncreasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean > wheat > maize > rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010–2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the “ozone yield gaps”), adding up to 227 Tg of lost yield. Our modelling shows that the highest ozone‐induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution‐focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 176 citations 176 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Funded by:EC | ECLAIREEC| ECLAIREGina Mills; Felicity Hayes; Katrina Sharps; David Simpson; David Simpson; Frank Dentener; Elena Paoletti; Malin Broberg; Madhoolika Agrawal; Zhaozhong Feng; Johan Uddling; Lisa Emberson; Patrick Büker; Shahibhushan B. Agrawal; Fernando Jaramillo; Rita Van Dingenen; Harry Harmens; William J. Davies; Kazuhiko Kobayashi; Håkan Pleijel; Maurits van den Berg; Elizabeth A. Ainsworth;doi: 10.1111/gcb.14157
pmid: 29604158
AbstractIntroduction of high‐performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain‐fed and irrigated areas of major wheat‐producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010–2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above‐mentioned UN SDG, while also contributing to other SDGs related to human health and well‐being, ecosystems and climate change.
CORE arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 194 citations 194 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 18visibility views 18 download downloads 375 Powered bymore_vert CORE arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Håkan Pleijel; Malin C. Broberg; Johan Uddling;pmid: 30769314
Data from experiments where field-grown wheat was exposed to ozone were collated in order to compare the effects in Europe, Asia and North America using dose-response regression. In addition to grain yield, average grain mass and harvest index were included to reflect the influence of ozone on the crop growth pattern. In order to include as many experiments as possible, daytime average ozone concentration was used as the ozone exposure index, but AOT40, estimated from average ozone concentrations, was also used to compare the performance of the two exposure metrics. The response to ozone differed significantly between the continents only for grain yield when using AOT40 as the exposure index. North American wheat was less sensitive than European and Asian that responded similarly. The variation in responses across all three continents was smallest for harvest index, followed by grain mass and grain yield. The highly consistent effect on harvest index shows that not only effects on biomass accumulation, but also on the partitioning of biomass, are important for the ozone-induced grain yield loss in wheat. The average duration of daily ozone exposure was longer in European experiments compared to North American and Asian. It cannot be excluded that this contributed to the indicated higher ozone sensitivity in European wheat in relation to North American. The main conclusions from this study are that on the average the response of wheat to ozone was lower for the older North American experiments and that the ozone response of the growth pattern reflected by grain mass and harvest index did not differ between continents.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.02.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.02.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Gina Mills; Johan Uddling; Madhoolika Agrawal; David Simpson; David Simpson; Lisa Emberson; Kazuhiko Kobayashi; Zhaozhong Feng; Malin Broberg; Michael Frei; Kent O. Burkey; Katrina Sharps; Håkan Pleijel;doi: 10.1111/gcb.14381
pmid: 30084165
AbstractIncreasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean > wheat > maize > rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010–2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the “ozone yield gaps”), adding up to 227 Tg of lost yield. Our modelling shows that the highest ozone‐induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution‐focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 176 citations 176 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Funded by:EC | ECLAIREEC| ECLAIREGina Mills; Felicity Hayes; Katrina Sharps; David Simpson; David Simpson; Frank Dentener; Elena Paoletti; Malin Broberg; Madhoolika Agrawal; Zhaozhong Feng; Johan Uddling; Lisa Emberson; Patrick Büker; Shahibhushan B. Agrawal; Fernando Jaramillo; Rita Van Dingenen; Harry Harmens; William J. Davies; Kazuhiko Kobayashi; Håkan Pleijel; Maurits van den Berg; Elizabeth A. Ainsworth;doi: 10.1111/gcb.14157
pmid: 29604158
AbstractIntroduction of high‐performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain‐fed and irrigated areas of major wheat‐producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010–2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above‐mentioned UN SDG, while also contributing to other SDGs related to human health and well‐being, ecosystems and climate change.
CORE arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 194 citations 194 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 18visibility views 18 download downloads 375 Powered bymore_vert CORE arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu